N

UNSW

SYDNEY

School of Computer Science & Engineering
B d Trustworthy Systems Group

Australia’s
Global
University

Verifying Device Drivers with Pancake

Junming Zhao

PhD Student, UNSW Sydney
junming.zhao@unsw.edu.au

Supervisors:

Dr. Rob Sison

Dr. Thomas Sewell

Scientia Professor Gernot Heiser

mailto:junming.zhao@unsw.edu.au

1

1.

Problem: Verify LionsOS subsystems

Verifying Device Drivers with Pancake — seL4 Summit, Sep'25

© 2025 Junming Zhao — CC BY 4.0 @

oA

vvvvvv

Verify LionsOS Subsystems

Lions
LionsOS
Networking File System
NI ... > Binary-level
Stack Driver l \ - Repea‘tab|e
Microkit

- > Concurrency

Qsel4 Microkernel

Approach: Pancake with toolchains

2 Verifying Device Drivers with Pancake — seL4 Summit, Sep'25 © 2025 Junming Zhao — CC BY 4.0 UNSW
a)

CE svoNey
A

2. Recap: Pancake

3 Verifying Device Drivers with Pancake — seL4 Summit, Sep'25 © 2025 Junming Zhao — CC BY 4.0 UNSW

C& “voney
oA

4

Main Features

> System Programming

> Verified Compiler

Verifying Device Drivers with Pancake — seL4 Summit, Sep'25

\
\,

Transformations

Pancak ntax
Parse concrete aditaild

syntax

Flatten structs <

Normalise program

Call optimisation <:
Shrink cutsets and

delete unused
assignments

Replace loops
with tail calls <

m—————— Pancake passes -—~~_
\

Languages |

Pancake AST

)
CrepLang:
imperative

language
without structs

—_—

'

LoopLang:
expressions
occur only on
RHS of
assignment
statements

—

las

CakeML passes
Languages Transformations

CakeML SY0B) g concrote symiax

FiatLang:
language

high-level
features.

ClosLang:
st language

with closures.
(has multi-arg

language
‘without
closures

BVL:
functional

> itertypes, extitai

Introduce giobals vars,
climinae modulas, etc.

> Gibaldead cod om.

“Tum pattem matches into
if-henelse decision trees

Switch to de Bruijn
indexed local variables

Fuse function calls
inio mul-arg calls

Track closure values &
inline small funct

Introduce C-style fast
calls where possible

> Remove deadcade

"> Amnotate cosure remtons
"> pertorm cosuro conv.
> Inline small functions
S g constans s

> Seitoversized functions

> Sompleobaluas o
dynamicaly resized aray

5 ortmse Lovooressons

Make some functions.
taibrocursive

> Suich toimperative syle
> Roduce callr-saved vars

Combine adjacent
memory allocations

Remove data abstraction

WordLang:
imperative
language with
machine words,
memory and
a GC primitive

StackLang:
imperative
language

with array-like
stack and
optional GC

Simplify program

Select target instructions
Perform SSA-like renaming
Force two-reg code (if req.)
Remove deadcode
Allocate register names
Concretise stack

Introduce (raw) calls past
function preambles

Implement GC primitive

Turn stack accesses into
memory accesses

Rename registers to match
arch registers/conventions

Flatten code
Delete no-ops (Tick, Skip)

Encode program as
concrete machine code

CakeML

3. Pancake-to-Viper

5 Verifying Device Drivers with Pancake — seL4 Summit, Sep'25 © 2025 Junming Zhao — CC BY 4.0 UNSW

C& “voney
oA

G Viper

eee M+ < (=] www.pm.inf.ethz.ch/research/viper. @& ¢ ©oh + O

E'HZUFiCh Programming M .
e ETH, Zurich

Intermediate language for
Viper verification

Automated verifier

Download Viper

Various frontend tools

VIPSI \YEIIILaUUI 11 Gt ULl S 1U1 1 S -
mission-based Reasoning) is a language
and suite of tools, providing an architec-
ture on which new verification tools and
prototypes can be developed simply and
quickly. Viper is being developed at ETH
Zurich in close collaboration with the
team of Alex Summers at UBC.

6

Verifying Device Drivers with Pancake — seL4 Summit, Sep'25

© 2025 Junming Zhao — CC BY 4.0

eee M+ < (=] www.pm.inf.ethz.ch/research/viper. @& ¢ ©oh + O

Frontend for
ETHziirich ropummioon S| Zudielh Python, Go, Rust, etc.

" rancake
* Intermediate language for

Viper verification

_ Nagini, Gobra,
Download Viper * AUtomated Verlﬁer PFUStI, etC

 Various frontend tools

viper \verincauy asu uLiuic Ul 1 -

mission-based Reasoning) is a language v
and suite of tools, providing an architec- .
ture on which new verification tools and Vl per
prototypes can be developed simply and
quickly. Viper is being developed at ETH

Zurich in close collaboration with the

team of Alex Summers at UBC.

ETH student: Alessandro Legnani SMT Solver

7 Verifying Device Drivers with Pancake — seL4 Summit, Sep'25 © 2025 Junming Zhao — CC BY 4.0

Demo

trustworthy.systems/pancake-playground

8 Verifying Device Drivers with Pancake — seL4 Summit, Sep'25 © 2025 Junming Zhao — CC BY 4.0 UNSW

SYDNEY

http://trustworthy.systems/pancake-playground

Pancake-to-Viper O

device.vpr
neighbor.vpr

driver.vpr

Manual

annotations

Transpiler

9 Verifying Device Drivers with Pancake — seL4 Summit, Sep'25 © 2025 Junming Zhao — CC BY 4.0

Pancake-to-Viper

RESEARCH-ARTICLE | OPEN ACCESS | &3S X in

Towards Trustworthy Automated Program Verifiers: Formally Validating device.vpr

Translations into an Intermediate Verification Language ,
neighbor.vpr

Authors: Gaurav Parthasarathy, Thibault Dardinier, Benjamin Bonneau, Peter Muller, Alexander |J.

Summers Authors Info & Claims

Manual Transpiler

annotations

driver.vpr

O

© 2025 Junming Zhao — CC BY 4.0

TCB

10 Verifying Device Drivers with Pancake — seL4 Summit, Sep'25

€ Pancake-to-Viper O

device.vpr
neighbor.vpr
y

driver.vpr

driver.&} driver-a.&}

Manual Transpiler
annotations

11 Verifying Device Drivers with Pancake — seL4 Summit, Sep'25 © 2025 Junming Zhao — CC BY 4.0

4. Ethernet Driver Verification

12 Verifying Device Drivers with Pancake — seL4 Summit, Sep'25

vvvvvv

Ethernet Driver Verification O'm'

| Component | Line Count ||
C Driver 351
Pancake Driver 411
Pancake annotations 558
device.vpr
Viper OS interfacing model 298 neighbor.vpr
driver. % » driver-a. % l
Manual ” Transpiler Viper

annotations 1~2 hron
G laptop

13 Verifying Device Drivers with Pancake — seL4 Summit, Sep'25 © 2025 Junming Zhao — CC BY 4.0

Ethernet Driver Verification

| Component | Line Count || Pro pertleS
C Driver 351)

Pancake Driver 411 > Device Safety
Pancake annotations 558 . .
Viper Device model 391 > Data integrity

Viper OS interfacing model 298

> Memory isolation

l

driver. % » driver-a. & » driver.vpr

4

1~2 hr on
laptop

14 Verifying Device Drivers with Pancake — seL4 Summit, Sep'25 © 2025 Junming Zhao — CC BY 4.0 UNSW
2

SYDNEY

Ethernet Driver Verification

1 O 00 [I I [I | | I 1 00
9 O 0 Pancaké igz: —@— gg
800 Pancake Driver CPU —&—

700 C Driver CPU —&— 70
600 60
500

400
300
200

T T 17T T 1T _1T 1T 1
jg

1000 [y

Received Throughput (Mb/s)
()]
(w)

Driver CPU Utilisation (%)

5o
100 | | \I/ | | | 10
0 0
©c O O O O O O o o <o
©c O O O O O O O O
— N N I n O > 0 &

Requested Throughput (Mb/s)

~20% Overhead vs. Unverified C driver

15 Verifying Device Drivers with Pancake — seL4 Summit, Sep'25 © 2025 Junming Zhao — CC BY 4.0 UNSW

ssssss
A

Ethernet Driver Verification

Search...

dI X1V > cs > arXiv:2501.08249

Computer Science > Programming Languages

[Submitted on 14 Jan 2025 (v1), last revised 30 May 2025 (this version, v2)]

Verifying Device Drivers with Pancake

Junming Zhao, Miki Tanaka, Johannes Aman Pohjola, Alessandro Legnani, Tiana Tsang Ung, H. Truong, Tsun Wang Sau, Thomas
Sewell, Rob Sison, Hira Syeda, Magnus Myreen, Michael Norrish, Gernot Heiser

Spec Spec Spec Spec Spec

Driver Rx Virt Tx Virt Copy

16 Verifying Device Drivers with Pancake — seL4 Summit, Sep'25 © 2025 Junming Zhao — CC BY 4.0

5. Concurrent Composition

17 Verifying Device Drivers with Pancake — seL4 Summit, Sep'25

vvvvvv

Concurrent Composition

Viper Model: Sequential {P} C {Q}

NIC

Vlrt \ -—

Driver

V|rt

Client

IP Stack « > Copy

18 Verifying Device Drivers with Pancake — seL4 Summit, Sep'25 © 2025 Junming Zhao — CC BY 4.0
A

A,

vvvvvv

Concurrent Composition

(
System Model

\ Spec Spec Spec Spec

Spec

Driver Rx Virt Tx Virt Copy

19 Verifying Device Drivers with Pancake — seL4 Summit, Sep'25

Rely-Guarantee +
Aczel Trace Model

Specs (Viper annotation): {P} C {Q}

Components (Pancake)

© 2025 Junming Zhao — CC BY 4.0 UNSW

C& “voney
oA

Concurrent Composition

Rely-Guarantee — {P R} C {Q, G}

Pre-condition (P): Initial state
Post-condition (Q): Final state
Rely (R): Environmental steps
Guarantee (G): My steps

O O O O

Aczel trace model

env me env

20 Verifying Device Drivers with Pancake — seL4 Summit, Sep'25

rely_env(s,, s,): bool

guar_me(s,, s,): bool

© 2025 Junming Zhao — CC BY 4.0 @

oA

vvvvvv

Concurrent Composition

Rely-Guarantee — {P R} C {Q, G}

Pre-condition (P): Initial state
Post-condition (Q): Final state
Rely (R): Environmental steps
Guarantee (G): My steps

O O O O

Aczel trace model

env me env

21 Verifying Device Drivers with Pancake — seL4 Summit, Sep'25

rely_env(s,, s,): bool

guar_me(s,, s,): bool

© 2025 Junming Zhao — CC BY 4.0 @

oA

vvvvvv

Concurrent Composition

Rely-Guarantee — {P R} C {Q, G}

Pre-condition (P): Initial state
Post-condition (Q): Final state
Rely (R): Environmental steps
Guarantee (G): My steps

O O O O

Aczel trace model

env me env

22 Verifying Device Drivers with Pancake — seL4 Summit, Sep'25

rely_env(s,, s,): bool

guar_me(s,, s,): bool

© 2025 Junming Zhao — CC BY 4.0 @

oA

vvvvvv

Concurrent Composition

env me env
Aczel trace model S, S, S, S3

method interference(shared_mem: Seq[Ref])

ensures rely_env(old(shared_mem), shared_mem) ITﬂyFenV(SO'S1)5b001

method shared_store(shared_mem: Seq[Ref], addr: Int, value: Int)

ensures guar_me(old(shared_mem), shared_mem) guar_nne(sl,sz):bool

23 Verifying Device Drivers with Pancake — seL4 Summit, Sep'25 © 2025 Junming Zhao — CC BY 4.0 UNSW

SYDNEY

Concurrent Composition

env me env
Aczel trace model So Sq S, S
method interference(shared_mem: Seq[Ref])
ensures rely_env(old(shared_mem), shared_mem)
method shared_store(shared_mem: Seq[Ref], addr: Int, value: Int)
ensures guar_me(old(shared_mem), shared_mem)
method some_function(shared_mem: Seq[Ref])
requires precondition(shared_mem)
ensures postcondition(shared_mem)
{
interference(shared_mem); // sB --(env)--> s1
shared_store(shared_mem, addr, value); // s1 --(me) --> s2
interference(shared_mem); // s2 --(env)--> s3
}

24 Verifying Device Drivers with Pancake — seL4 Summit, Sep'25

rely_env(s, s,): bool

guar_me(s,, s,): bool

{[Sy Sy Sy S,] |
pre(s,) A
rely_env(s,, s,) A
guar_me(s,, s,) A
rely_env(s,, s,) A
post(sg) }

© 2025 Junming Zhao — CC BY 4.0 UNSW

vvvvvv

A

Concurrent Composition

System Model

L R/G, R/G, R/G RG,

RS/GS

J

Driver Rx Virt Tx Virt Copy

25 Verifying Device Drivers with Pancake — seL4 Summit, Sep'25

Rely-Guarantee +
Aczel Trace Model

Vi: A €{1,.., n}\{i} G E R

© 2025 Junming Zhao — CC BY 4.0 @

oA

vvvvvv

Concurrent Composition

|4v trace monad lib

4) S

type_synonym ('s, 'a) tmonad =
System Model s =

((tmid x 's) list x ('s, 'a) tmres)
set”

\ Rl/G1 Rz/Gz R?’/G3 R4/G4 RS/G5 y
definition validI ::
"('s ® 's = bool) =

. . . 's rg_pred =
Driver Rx Virt Tx Virt Copy - ('s,'a) tmonad =

's rg_pred =
('la = 's > 's = bool) =
bool”

(" (=D, 2y 7 - 72D) Y)
where

“{PL, {R} T {GL,{Q} = ...

26 Verifying Device Drivers with Pancake — seL4 Summit, Sep'25 © 2025 Junming Zhao — CC BY 4.0 @ UNSW

vvvvvv

Concurrent Composition

{ System Properties Verification
iy
&ﬁ y System Model
Spec Spec Spec Spec Spec
Driver Rx Virt Tx Virt Copy

27 Verifying Device Drivers with Pancake — selL.4 Summit, Sep'25

> Correctness Properties
o recv/send()

> Safety Properties
o Memory safety
o Protocol adherence
o Device safety

> Liveness Properties

o Packet delivery
O

© 2025 Junming Zhao — CC BY 4.0 @
el

vvvvvv

Recap:

Verifying Device Driver w/ Pancake

> (Relatively) Low verification effort
> Compositional verification for concurrency

> Applicable to real-world, performant systems

Repeatable, systematic approach for verifying seL4-based services |

28 Verifying Device Drivers with Pancake — selL.4 Summit, Sep'25 © 2025 Junming Zhao — CC BY 4.0 @
A

vvvvvv

Thank you

29 Verifying Device Drivers with Pancake — seL4 Summit, Sep'25 © 2025 Junming Zhao — CC BY 4.0

SYDNEY

