School of Computer Science & Engineering
UW o Trustworthy Systems Group w

Global
SYDNEY

University

Trustworthy Systems
R&D Update

Gernot Heiser

gernot@unsw.edu.au
@microkerneldude.bsky.social
https://microkerneldude.org/

What's Happening at TS?

 LionsOS/sDDF/Microkit development
* LionsQOS verification agenda

« Pancake

 Device interface specifications
 Other on-going work

selL4 Summit — TS R&D Update — Sep'25 © 2025 Gernot Heiser — CC BY 4.0 UNSW

ssssss

LionsOS development

Lions

selL4 Summit — TS R&D Update — Sep'25 © 2025 Gernot Heiser — CC BY 4.0 UNSW

ssssss

Recap: LionsOS Design Principles

Helps development
and verification!

seL4 Summit — TS R&D Update — Sep'25

Radical simplicity:

fine-grained modularity,
strict separation of concerns
event-driven programming model Concurrency by

strictly sequential code distributing components
use-case-specific policies

Use-case diversity by
replacing components

© 2025 Gernot Heiser — CC BY 4.0 UNSW

P lBNEn

cm Foundations: selL4 + Microkit + sDDF

OS services

Ch"‘
] sel4 Device Driver

Lions® Framework

Microkit

ﬁ Abstract
@-=cl4

O =

4 seL4 Summit — TS R&D Update — Sep'25 © 2025 Gernot Heiser — CC BY 4.0 :n: UNSW

YYYYYY

Example: Networking Subsystem OT=

Client can IP stack is library —
be a VM not in system’s TCB!

Tx Virt encapsulates of concerns!
traffic-shaping policy

NIC

Handles broadcasts
ARP
Client

IP Stack < > Copy

) : : Translates HW-specific
Virtualiser shares device, device interface to HW-

incl address mapping, independent device-
cache maintanance class interface

Copier for security

(if needed)

5 selL4 Summit — TS R&D Update — Sep'25 © 2025 Gernot Heiser — CC BY 4.0

Strict separation

YYYYYY

i} Underneath https://sel4.systems/ O

|
|AppI|cat|on Webserver.py

Console | Timer VFS Modules are:

e Small

» Single-threaded

« Asynchronous, zero-
copy, shared-memory
communication

Serial [Timer Ethernet * Location transparent
Driver Driver e Driver « Verification-friendly

Tx-Virt Rx-Virt

6 selL4 Summit — TS R&D Update — Sep'25 © 2025 Gernot Heiser — CC BY 4.0

Web Server Code Sizes (all C) O
--

Timer Driver 139 Microkit
Serial Driver 231 Serial queue 169
Serial Tx Virt 159 Eth queue 140
Serial Rx Virt 109 Filesys queue
Eth Driver 397 < pleliess! 268
Trusted: Eth Tx Virt 107
13 modules/ Eth Rx Virt 151 Coroutines 848
libraries Eth Copier 73 LWIP 16,280 m
A Monitor 1,188 45,707

LionsOS trusted mmm

Web server app 7,246 MicroPython 402,554

7 selL4 Summit — TS R&D Update — Sep'25 © 2025 Gernot Heiser — CC BY 4.0

Re-Using Unmodified Legacy Drivers

One setup per
device class Interface same as

for native driver

shared
regions

VMM Notific. p Signal
ACK handler
handler

Lions

- — e e —
v

Signal 5

selL4 Summit — TS R&D Update — Sep'25 © 2025 Gernot Heiser — CC BY 4.0 UM&W

Driver-VM Cost O

Effort:

Driver | Kemel | RAM Disk | Runtime | Total

In progress: using same
setup to develop LionsOS
modules under Linux

Default 29 MiB 6.7MB 70MiB 106 MiB ReuilnlEEe
Audio 3 MiB 24MiB 18 MiB

Block 3MB 0.05MiB 12 MiB

* Few days to set up UIO driver
 Total = 2 weeks / device class

seL4 Summit — TS R&D Update — Sep'25 © 2025 Gernot Heiser — CC BY 4.0 [«: UNSW

ssssss

Status: Microkit

Available: Further out:
« Support for Arm, RISC-V « Core on-/off-lining
» Graphical editor * needs kernel changes
. GDB, prof”mg ° Template PDs
« Dynamic assignment of
Close to merging: channels, memory regions

+ x86 support * MAC augmented by DAC

- Using CapDL loader Should be sufficient
for closing RFC

Multi-kernel support in progress:
 Demo version end of this month

10 seL4 Summit — TS R&D Update — Sep'25 © 2025 Gernot Heiser — CC BY 4.0 UNSW

VVVVVV

11

Status: sDDF Device Classes

Native Driver VMs

* Serial - GPU (2D)

* Timer « Ethernet

 Clock « Storage

* PinMux « Sound (ALSA)

« 12C * Video capture in progress
« SPI

* Ethernet * Implementations on Arm

- SDHC storage » Subset on x86, RISC-V

* Rust drivers
* NFC card reader - sDDF no longer tied to Microkit

selL4 Summit — TS R&D Update — Sep'25 © 2025 Gernot Heiser — CC BY 4.0 UNSW

VVVVVV

Status: OS Services

Supported:

« Networking — native (async)

« Storage (ported file system) — native (async) and blocking (Posix-like)
« Debugging (GDB)

* Profiling (preliminary)

« Multicore — full location transparency of OS modules

Work in progress:
« x86: to do IOMMU & virtualisation support
« Multikernel support (mostly abstracted by Microkit)

12 selL4 Summit — TS R&D Update — Sep'25 © 2025 Gernot Heiser — CC BY 4.0 UNSW

ssssss

Performance: i.MX8MQ, 1Gb/s Eth, UDP

1 100
© " CPU: Small l §
8 0.8 _is good! | 80 g
= 0.6 160 &
g2 | g
= 0.4 i 40 =
O
c 0.2 - LionsOS 120
= f Large is goodI |_|nux : O

O \ \ \ \ \ \ O

0 010203040506070809 1
Applied Load (Gb/s)

Single-core configuration

selL4 Summit — TS R&D Update — Sep'25 © 2025 Gernot Heiser — CC BY 4.0 UM&W

Performance: Processing Cost per Byte

1 LionsOS 80
 Lions |
—~ 08 ? Linux 170
£ 77 || Factor 3.5 -1 60
S Cycles: Small 1lzn0 m
= 0.6 is good! 120 @
o 140 3
< | . >
IS 20
z 02~ |
* Factor 1.8 Factor 3¢ 110
O ! \ \ \ \ \ \ \ \ \ !] O

0O 010203040506 070809 1
Applied Load (Gb/s)

selL4 Summit — TS R&D Update — Sep'25 © 2025 Gernot Heiser — CC BY 4.0 UNSW

VVVVVV

Performance: Round-Trip Times
1

-10000
RTT: Small |
= - is good!
¢ 0.8 Sa08 0.5-1 OoM!
(5 | o)
?5/ 0.6 | 1000 i—%
(@X
|_
-
2 0.4 - -
O : =100
= 02" :
| LionsOS
Linux
O L \ \ \ I I T N BT 10

0 0.102030405060.70809 1
Applied Load (Gb/s)

15 seL4 Summit — TS R&D Update — Sep'25 © 2025 Gernot Heiser — CC BY 4.0 UNSW

VVVVVV

el

Performance: i.MX8MQ, 1Gb/s Eth, UDP

1 1180
@ i o 160 ;\3
8 0.8 Largeis™ | 140 st
— 0.6 | CPU: Small goodii 120 O
3 _is good! -100 8
S 0.4 |- 180 =
3 : 160 g
c 0.2 - LionsOS 140 7
= * Linux. i20 O

O \ \ \ \ \ ! \ ! \ O

0 010203040506070809 1
Applied Load (Gb/s)

Multicore configuration

selL4 Summit — TS R&D Update — Sep'25 © 2025 Gernot Heiser — CC BY 4.0 UM&W

Performance: x86, 10Gb/s Eth, UDP

=10 1000
2 |
o) 8 180 g
5 6 160 =
O . (0))
S 4+ 140 2
3 o L LionsOS 109 S
c | Linux 13
|— O | | ! | ! | O 8/
0 2 4 6 8 10

Applied Load (Gb/s)

Single-core configuration

17 selL4 Summit — TS R&D Update — Sep'25 © 2025 Gernot Heiser — CC BY 4.0 UNSW

VVVVVV

18

Client Scalability (i.MX8M)

1 client
2 clients
4 clients =
8 clients

€T

II II
0.1 0.2 0.5

1

Applied Load (Gb/s)

Unicore, equal bandwidth per client

selL4 Summit — TS R&D Update — Sep'25

100 O
2
g0 C
-
60 =
=
40 &
O
20 2
S

© 2025 Gernot Heiser — CC BY 4.0 UNSW

VVVVVV

Performance: Sandisk, Arm, Read

Sequential Random

@90 20 O
m 80 g
~ 60 _ — _ —
S50 - ~ Linux | Linux 1 10T
40 - LionsOS - LionsOS W]
O 30 | I =
8 20 | N 19 5
= 10 - —~
I—E 0 U | | D' ¢ | | | 0 32

4 16 64 256 10244096 4 16 64 256 10244096
Request Size (KiB) Request Size (KiB)

19 selL4 Summit — TS R&D Update — Sep'25 © 2025 Gernot Heiser — CC BY 4.0 UNSW

S VDN E
=7

Performance: Sandisk, Arm, Write

Py Sequential Random

25 10 Q)
0 U
— 5 1L | -

20 8

= -
51 Linux 10 Linux 18 =
S0 LionsOS Nt LionsOS 1400
o o
8 S | - —- 2 3
I_E o U | , | | 0 §

4 16 64 256 10244096 4 16 64 256 10244096
Request Size (KiB) Request Size (KiB)

20 selL4 Summit — TS R&D Update — Sep'25 © 2025 Gernot Heiser — CC BY 4.0 UNSW

S VDN E
=7

21

Web Server System Benchmark

LionsOS-NFS
LionsOS-in-mem
B | inux-NFS
Linux- in-mem
Linux- nginx

i Iii=_ Iii= '3
10 20 40 80
Concurrency Level

selL4 Summit — TS R&D Update — Sep'25

200

150

uaje

100 ©

(sw) A

© 2025 Gernot Heiser — CC BY 4.0 UNSW

vvvvvv

Firewall Project

m < Ser TxV - TCP Flt Firewall has:
Ser RxV =" UDP Elt « TCP connection tracking
...... f - ICMP, TCP and UDP
ICMP Flt « Rudimentary GUI, web interface

> NIClTxV 4—" -~ « Basic routing

— NIC RxV
S ARP R / N
ARP Rs "/, G - h Firewall wants:

... » ARPRg AR - QoS queuing for VOIP, video..

P S
[N|C RxV TCP F|t] / « NAT and port forwarding
\ « More complete ICMP

UDP FIt \ NIC TxV
W * SNMP monitoring
ICMP Flt— - Spanning Tree protocols

« Port to commercial platform
ICMP « Better GUI...

Firewall queue : :
rewat qued https://lionsos.org/docs/examples/firewall/

VVVVVV

22 seL4 Summit — TS R&D Update — Sep'25 © 2025 Gernot Heiser — CC BY 4.0 UNSW

https://lionsos.org/docs/examples/firewall/
https://lionsos.org/docs/examples/firewall/
https://lionsos.org/docs/examples/firewall/

() [
LionsOS 0.3.0

Components
I/O
Virtual Machines
Example systems
Reference system (Kitty)
Firewall
Building
Running
Web server
Using LionsOS
Language Support
Integration
Debugging
Profiling
Contributing
Releases
Status & Roadmap

Source code

Firewall system

The LionsOS project contains an example system that acts as a firewall between networks. Each
network interface of the firewall system has its own instance of an sDDF net subsystem. The
firewall multiplexes incoming traffic based on its protocol, and permits or denies the traffic based
on a set of build and run-time configurable rules. The firewall also acts as a router and can
forward traffic to its next-hop based on a build and run-time configurable routing table. There are
further networking functionalities the firewall is capable of detailed below. A list of issues and
missing features of the firewall we hope to continue working on can be found here.

This page describes the system'’s architecture and details how it works, if you are interested in
building and running it see the pages on:

e Building

¢ Running

Supported platforms

The system currently only works on the following platform, although we hope to expand this in
the future:

« Compulab IOT-GATE-IMX8PLUS

Since we currently only support real hardware, to test the firewall system you will also need to
configure subnets and network nodes for each network interface. For details on this, please see
the section on running the firewall.

Architecture

Below is a diagram of the architecture of the firewall system containing all the components.
Components with arrows are connected via a Microkit Channel and shared memory, holding
some type of sDDF or firewall queue data structure.

Verification Agenda

24 selL4 Summit — TS R&D Update — Sep'25 © 2025 Gernot Heiser — CC BY 4.0 UNSW

SYDNEY

Mixed —
criticality Critical

25

Control

Sensor Actuator

Verification

Storage

Touch
Screen

LionsOS

Hardware
PIRISC °

seL4 Summit — TS R&D Update — Sep'25

vvvvvv

System Verification Challenges

Verify System Properties

- %
m Verify I I I Device
Component SpIeC SpIeC SpIeC ,

Connect to Virt Driver

selL4 Spec I I I
o-“lf-|-4 Spec

26 seL4 Summit — TS R&D Update — Sep'25 © 2025 Gernot Heiser — CC BY 4.0 UNSW

vvvvvv

Time Protection Progress

Preventing micro-architectural timing channels
» Usable system model: allow overt cross-domain channels
« Verification progressing

Add state flush,

cache colouring

Prove absence of

information flow Abstract
Model
Re-do
proofs

C Imple-
mentation

27 selL4 Summit — TS R&D Update — Sep'25 © 2025 Gernot Heiser — CC BY 4.0 {«: UNSW

VVVVVV

@=eld WCET Analysis

Now re-done using Heptane

Sound worst-case execution times e 64-bit
 Originally done 2011-17 RISC-V
» 32-bit Arm only, no MCS MCS kernel

* Bit-rotted Place-holder latencies
Accurate latencies to be
Program Gontrol- extracted from hardware

binary flow graph
IOLooz Micro- Integer
ounds architecture linear
C Implementation equations ’

Infeasible
path info Loop Infeasible
bounds path info

ajejouuy

Binary code

28 seL4 Summit — TS R&D Update — Sep'25 © 2025 Gernot Heiser — CC BY 4.0 Ef?ﬂ UH,,N§EW
s

29

Pancake

selL4 Summit — TS R&D Update — Sep'25

© 2025 Gernot Heiser — CC BY 4.0

(]

«

Device Driver Dilemma

High selL4 verification

: costs partially due to
selL4 is one-off, C language

justifies cost

Drivers are :
Drivers are low-level, Better language

SETeEy ' would reduce cost
must be cheap! need C-like language

sDDF Idea:
1. Simplify drivers « Well-defined semantics
e Verified Compiler 2. Use Veriﬁcation-friendly o Memory_safe
« de-compilation systems language
e ATP 3. Automate (part of) verification

30 selL4 Summit — TS R&D Update — Sep'25 © 2025 Gernot Heiser — CC BY 4.0 UH%W

Crs)

CakeML passes

Languages Transformations
G S CakeMI
C:

Jommm———— Pancake passes -—~~ o Infertypes, exitif fal
\
/ . . f H D Gt doa

o ong' [> ciobetcead code m.
without

y Turn pattern matches into
high-level if-then-else decision trees

features.
o Swihiode s
indexed
Fuse function calls
into multi-arg calls

ClosLang: | > Track closure values &
last language inline smal funct

Pancake syntax
Parse concrete <
syntax
Y (' Pancake AST)

Flatten structs <,—

CrepLang: Z marecaves
imperative calls where possible
language > Remove deadcode

without structs > Annotate closure creations

Normalise program o> Perform closure conv.

> Inline smallfunctions

> Foldconstans ink
N eis
o Call optimisation < > Spitoversized unctons
o LooplLang: closures
Shrink cutsets and expressions Gomamcaty resed anay
delete unused occur only on > Optimise Let-expressions

‘one global

Make some functions.
variable

tailrecursive
> Switch toimperative style
> Reduce calr-saved vars

Combine adjacent
memory allocations.

» Re-use lower part of R
CakeML compiler stack \ —

« Get verified Pancake .
compiler quickly |

« Retain mature
framework/ecosystem

Remove data abstraction

Simplify program

WordLang:
imperative
language with
machine words,
memory and
a GC primitive

Select target instructions
Perform SSA-like renaming
Force two-reg code (if req.)
Remove deadcode
Allocate register names

2
2
P
P
P
P
> Concretise stack
o
o)
2
2
P
2

Introduce (raw) calls past
function preambles

StackLang:
imperative Implement GC primitive
language .
n f Turn stack accesses into
with array-like memory acceses
stack and
optional GC Rename registers to match

arch registers/conventions

Flatten code

Delete no-ops (Tick, Skip)

Encode program as
concrete machine code

%

y (ARMVB) (XBG-GA) (MIPS-64) (RISC-V) /

seL4 Summit — TS R&D Update — Sep'25 © 2025 Gernot Heiser — CC BY 4.0

Pancake Progress

Functionality:

« Shared memory support — eliminates many FFls

« 16-bit and 32-bit load/stores (64-bit archs) — eliminates more FFls
 Global variables

« Shape checking (word vs struct)

Usability:

* Very few FFls needed (mostly memory sync instructions)

« Performance within 15-20% of C (dominated by FFI overheads)
* Re-written most Maaxboard drivers

* libmicrokit re-write in progress

32 selL4 Summit — TS R&D Update — Sep'25 © 2025 Gernot Heiser — CC BY 4.0 UNJ%W

=

Pancake To Come

* Function inlining

« More compiler optimisations (eg memcpy)
« Decompilation into logic

* Hoare logic (see Junming'’s talk)

* Verified transpiler (see Junming's talk)

S VDN E
=7

33 selL4 Summit — TS R&D Update — Sep'25 © 2025 Gernot Heiser — CC BY 4.0 UNSW

High-Assurance Device Spec

CCBY 4.0 UNSW
=2

2

Device Driver Bugs in Linux O

o Eliminated by
Mostly eliminated Pancake +
by design, rest by verification
verification

" Device protocol violations
[] OS protocol violations

[] Concurrency errors

e Generic errors
Eliminated .

by Pancake
+ verification

[Ryzhyk et al., EuroSys’09]

YYYYYY

35 Barkhausen — Sep'25 © 2025 Gernot Heiser - CC BY 4.0 ##s) UNSW

36

Driver

Barkhausen — Sep'25

Verify

>

Dev Spec
HOL4

'I‘Interactive Theorem Proving

FSM
HOL4 Certified
A l/CompiIation
Manual AST'
translation HOL4
\l/ Pretty Printing
FSM € FSM'
Verilog Equivalence Verilog
Check \LVerification
Device
Verilog

© 2025 Gernot Heiser — CC BY 4.0 UNSW

VVVVVV

Status: 12C

Driver

€

Other devices:
» SPI: working on HOL-4 FSM
» Ethernet controller next

37 Barkhausen — Sep'25

Dev Spec
HOL4
A
FSM
HOL4
A 1%
AST'
v HOL4
Y
FSM FSM'
Verilog < > Verilog
\4
Device
Verilog

© 2025 Gernot Heiser — CC BY 4.0 UNSW

vvvvvv

38

Aim: Simplified Process

Driver

Barkhausen — Sep'25

Verify

>

Dev Spec
HOL4

Pla'n;

'I‘Interactive Theorem Proving

FSM

Verilog

© 2025 Gernot Heiser — CC BY 4.0 UNSW

vvvvvv

Other On-Going Work

39 selL4 Summit — TS R&D Update — Sep'25 © 2025 Gernot Heiser — CC BY 4.0 UNSW

SYDNEY

Other Work

Secure Microservices on selL4

« Joint work with UCR, funded by AFRL

« Shared R/O, partitioned R/W file system
« Based in template PDs, DAC

Djawula — provably secure, general-purpose OS
« Several new PhD students
« About to gather steam

40 selL4 Summit — TS R&D Update — Sep'25 © 2025 Gernot Heiser — CC BY 4.0 UNJ%W

=

Summary

« Performance isn’t a weakness, it's a strength!

 Device driver availability is no longer a problem (for most embedded use)
« System services are maturing

* Verification of user-level components is happening (see Junming's talk)

« We're about to solve the problem of driver bugs for good

» Hard real-time is back!

ssssss

selL4 Summit — TS R&D Update — Sep'25 © 2025 Gernot Heiser — CC BY 4.0 UNSW

https://trustworthy.systems

r \

S

% S

cyberagentur

42 selL4 Summit — TS R&D Update — Sep'25 © 2025 Gernot Heiser — CC BY 4.0

https://trustworthy.systems/
https://trustworthy.systems/

