
严禁未授权复制、印刷、披露或传播该演示文稿严禁未授权复制、印刷、披露或传播该演示文稿

Towards Dependable System Services

seL4 Summit 2025

Prague, CZ

09/03/2025

Yanyan Shen

Dhammika Elkaduwe



Backgrounds

A flaw or defect in the system

• Intentional: attacks, viruses, malicious logic …

• Accidental: programming bugs, race 
conditions, transient hardware issues ..

• External: power outage, physical attack …

Faults Errors

A manifestation of a fault

• Incorrect register values

• A busy looping thread

• Corrupted memory

Failures

A visible outcome of an error

• Program crashes

• System crashes

• Loss of data

Detect and Recover to Improve Service Availability



How Can seL4 Help

• No accidental programming bugs

• Small TCB in privileged mode

• Less total execution time in privileged mode

A Verified Kernel

Microkernel Architecture

• User mode fault handling

• User-mode services: fault containment

• Micro restart

• Policy-free

System Software Supports for FT Systems

Isolation between the kernel and system services
• When a service crashes, the kernel still runs.

Process isolation and fault containment
• Each service has its own address space.
• When the file system is down, the scheduler or network still runs.

Health checks and monitoring
• Exception handler
• Watchdog
• Integrity checks (data checksum, replication)
• Liveness

Recovery
• Process restart
• Checkpointing and rollback
• IPC retry/timeout/error report



System Health Monitor

Hierarchical Monitoring

System Monitor

ProcessNetwork Device Time

Network 
Driver

Block 
DriverDrivers

Test_App

Monitor

Report

Self-Monitor

File

• System monitor watches servers
• Device server watches drivers
• Direct fault handler: exceptions, cap faults 
• An external test app to trigger operations
• Self-monitoring
• Check if a service is alive and working
• When system monitor or process server fails, a 

system reset is triggered. 

Control/data



Recovery Approaches and Challenges

Backward Recovery
• Checkpoint and rollback
• Journaling/logging

Forward Recovery
• Error masking (redundant execution, error-

correcting code)
• Retry with alternate resource

Replication-Based Recovery
• Lock stepping
• Active-active, active-backup

Service Restart (our topic)
• Restart a faulty component without stopping the 

whole system and continue running

State Management
• Most servers have states
• IDs or sessions maintained with clients
• In-flight requests

Detection Accuracy
• Timeouts of heartbeats should be tuned for services
• Avoid needless restarts caused by false positives
• Long service delay caused by false negatives
• Performance overhead

Transparent Restart?
• Ideally, transparent to applications
• Visible to other OS service components

Complex Recovery Logic
• Bugs in recovery code
• Tests for uncommon code paths



Device Driver Restart

• Each driver is a separate process.

• IPC and shared memory are used for connecting the clients and drivers.

• ELF files of drivers are kept in memory.

• Requests and responses are in the shared memory region, which is 

preserved during driver restart.

• A server waits until a driver becomes ready after a restart and 

reestablishes control/data paths.

• Unfinished requests in the SHM will be retried by the restarted driver.

• Few internal states.

• The data integrity of SHM needs to be protected by other measures.
FS

Block Driver

Dev Mgr

Block Driver

SHM

crash restart

restart 
ntfn

close reinit

A block driver as an example



Server Restart - Time Service

• Maintain wall clock
• Serve one-shot or periodical timers

Time Service

Apps

Arm Arch Timers

Lists of Timers

Client Sessions

Time Service

Arm Arch Timers

Lists of Timers

Client Sessions

App

Timer Info

App

Timer Info

Process Server

Ntfn

Reconnect

Reconstruct

• An app keeps track of timers 
it uses. This is hidden in the 
library so that the callers of 
the POSIX APIs do not need 
to modify code.

• The states of time services 
can be reconstructed by 
recovering timer 
information saved by the 
apps.

• A background thread 
reinitializes the timers.



Server Restart - File Service

Client Sessions
• A copy of open files and states are saved in the clients’ data area.
• Sessions can be reestablished when clients detect issues.

Job Queues
• Pending jobs are discarded, clients will reissue.
• Interrupted jobs need to be examined individually.

FNodes
• Gradually reconstruct based on clients’ data.

Page Cache
• Preserved across restart since apps still access it while restarting.
• Reconstruct the relations with FNodes from data from clients and 

process server.

Journal

SHM with Block Driver
• Preserved across restart.

File Service 

Apps

Block Driver

SHM

Client Sessions

Page Cache

FNodes

Journal

Job Queues

mmap



Summary

• seL4 and microkernel architecture align perfectly with the architectural requirements of a fault-tolerant OS.

• Hierarchical monitoring is critical for timely detection.

• Service restart is a practical and promising approach to tolerating accidental faults.

• Stateless services are straight-forward to support restart.

• State management for existing complex services needs to be examined carefully and individually.

• Shift more states to applications to simplify state management and service restart.

• More comprehensive fault injection campaigns to evaluate the effectiveness.

• Mechanisms to ensure that the states kept in applications are not modified by user code.

Future Work



10/16/2024NIO 10



09/03/2025NIO 11

Thank you


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

