
Rust-based 
Drivers & 
Verified Rust 
Applications 
on seL4

Robbie VanVossen

DornerWorks

seL4 Summit 2025



Introduction

○ Many seL4-based systems have high-assurance requirements
○ Often, high confidence needs to be extended into some user space applications
○ How to increase user application confidence?

1. Use memory safe & type safe languages
2. Test the applications thoroughly
3. Formally verify the applications

○ Layering these approaches: 

• Improves confidence
• Makes each subsequent approach easier



○ HAMR & Verus
○ HAMR uses system modelling and code generation to create skeletons and glue code

• Automates and connects system architecture to the application implementation
○ Verus is a tool for verifying the correctness of code written in Rust
○ Architectural contracts are used to generate application level contracts in Verus

• The user can then connect those to the manually developed Verus specs to verify the component and show that 
the contracts are met.

○ Architectural contracts are also used to generate executable version of the contracts
• This enables property-based testing

INSPECTA Tools



○ Legacy application run in the VM (autopilot)
• Security is an after-thought

○ Security requirements start getting addressed/changed 
during development

○ Implement as many security features outside of the VM 
to give clear separation between

• Application development
• Security features

Use Case Architecture



Low-level Ethernet Driver

○ Developed without INSPECTA tools, but then ported into the generated architecture
○ Implemented in Rust
○ Mostly gives us memory safety, however

• 10 blocks of manually written unsafe blocks: Pointer arithmetic and dereference for MMIO and DMA regions
○ Utilized seL4 foundation libraries to reduce user effort

• Microkit lib provides a convenient macro to translate memory region symbols (defined in microkit system file) into 
mutable, NonNull pointers

• Traits from foundation libs and third-party libs allow for standardized interfaces and the use of already 
implemented features

○ Difficult to test since it is mainly interacting with hardware



○ Developed with INSPECTA tools
○ Implemented in Rust within the HAMR-generated architecture

• Few dependencies and no manually written unsafe code:
• Good base-line confidence through memory & type safety

○ Gained further confidence by implementing unit tests
• ~95% code coverage!
• Some downsides:

• No real traceability from unit tests to requirements
• Required some function mocking/stubbing

○ Good initial target for verification

Firewalls



Verification approach

○ There are different policies for data flowing into 
the VM vs data flowing out of the VM

• Implemented as 2 separate components
• Use the same library for parsing

○ Requirements relate the policy to each relevant 
byte in an ethernet frame

• Allows us to reason about the policy in relation to 
an ethernet frame

○ Write architectural contracts which codify the 
natural language requirements



Formalization of requirements as contracts
Guarantee Contract clause per requirement



GUMBO Spec Functions
Spec functions codify the byte specification from the requirements



GUMBO Spec Functions
Spec functions codify the byte specification from the requirements



Generated Verus
Spec



Ethernet Frame Parser Library











RxFirewall









TxFirewall







Verification Results

○ Due to significant testing, verification only revealed one new bug.
○ A potential overflow was found 

• Packet size reported for an IPv4 packet was unbounded. 
• This resulted in a change to requirements, specification, and code to limit this size. 

○ I spent 94 hours on the verification effort. 6 of those were paired programming with a formal methods 
expert.

• Also, an initial, unrefined version of the GUMBO contracts and the ideas for the verification approach were 
provided by KSU

• These were invaluable to getting started
• I had no formal methods experience prior to this

○ Some code was made more complicated because Verus did not already supply specification/proofs for 
some standard libraries



Property-Based Testing

○ HAMR generates executable code from the specification for property-based testing
○ 12 hours of effort to write input array generation strategies

• This effort was probably so low because I already went through verification effort
• The code and specification are already trusted

• No function mocking/stubbing required!
○ Usually gives 100% code coverage 

• Because it is randomized, I don’t always get 100%
• Could tweak number of tests or weightings for more consistency

○ All tests passing != all contracts are being met
• All tests passing + 100% code coverage != all contracts are being met

• Some improvements still needed
○ A method to test out the specification and code
○ Can be used on its own or with verification to increase confidence

An alternative to handwritten unit tests



Input Strategies





Conclusion

○ Layering security strategies increases confidence and can make subsequent strategies easier
○ The use of the INSPECTA tools, such as HAMR and Verus, make formal methods approachable to 

systems engineers and can improve development time
○ A modelling workflow allows for:

• Formalization of requirements to architectural contracts
• Generation of infrastructure/architectural code, verification contracts, and test infrastructure
• Nice separation between architecture responsibilities and application responsibilities
• Better reconfiguration/re-use of components

• Can be seen with how easy it was to implement 2 different firewall policies
• Obvious traceability from requirements → contracts → verification/tests

○ Would like to continue to apply this approach to the driver and more applications



Questions?

○ Requirements:
• https://github.com/loonwerks/INSPECTA-models/blob/dw/firewalls-verified/open-platform-models/isolate-etherne

t-simple/requirements/Inspecta-HLRs.pdf 
○ Model:

• https://github.com/loonwerks/INSPECTA-models/blob/dw/firewalls-verified/open-platform-models/isolate-etherne
t-simple/aadl/SW.aadl 

○ Ethernet Frame Parser Library:
• https://github.com/loonwerks/INSPECTA-models/tree/dw/firewalls-verified/open-platform-models/isolate-ethernet

-simple/microkit/crates/firewall_core 
○ Rx Firewall:

• https://github.com/loonwerks/INSPECTA-models/tree/dw/firewalls-verified/open-platform-models/isolate-ethernet
-simple/microkit/crates/seL4_RxFirewall_RxFirewall 

○ Tx Firewall:
• https://github.com/loonwerks/INSPECTA-models/tree/dw/firewalls-verified/open-platform-models/isolate-ethernet

-simple/microkit/crates/seL4_TxFirewall_TxFirewall 

See the opened code/architecture/requirements/specification

https://github.com/loonwerks/INSPECTA-models/blob/dw/firewalls-verified/open-platform-models/isolate-ethernet-simple/requirements/Inspecta-HLRs.pdf
https://github.com/loonwerks/INSPECTA-models/blob/dw/firewalls-verified/open-platform-models/isolate-ethernet-simple/requirements/Inspecta-HLRs.pdf
https://github.com/loonwerks/INSPECTA-models/blob/dw/firewalls-verified/open-platform-models/isolate-ethernet-simple/aadl/SW.aadl
https://github.com/loonwerks/INSPECTA-models/blob/dw/firewalls-verified/open-platform-models/isolate-ethernet-simple/aadl/SW.aadl
https://github.com/loonwerks/INSPECTA-models/tree/dw/firewalls-verified/open-platform-models/isolate-ethernet-simple/microkit/crates/firewall_core
https://github.com/loonwerks/INSPECTA-models/tree/dw/firewalls-verified/open-platform-models/isolate-ethernet-simple/microkit/crates/firewall_core
https://github.com/loonwerks/INSPECTA-models/tree/dw/firewalls-verified/open-platform-models/isolate-ethernet-simple/microkit/crates/seL4_RxFirewall_RxFirewall
https://github.com/loonwerks/INSPECTA-models/tree/dw/firewalls-verified/open-platform-models/isolate-ethernet-simple/microkit/crates/seL4_RxFirewall_RxFirewall
https://github.com/loonwerks/INSPECTA-models/tree/dw/firewalls-verified/open-platform-models/isolate-ethernet-simple/microkit/crates/seL4_TxFirewall_TxFirewall
https://github.com/loonwerks/INSPECTA-models/tree/dw/firewalls-verified/open-platform-models/isolate-ethernet-simple/microkit/crates/seL4_TxFirewall_TxFirewall

