Reconfigurable Partitioned Hardware Acceleration for Safety-Critical Applications

Excerpts from Vincent Janson's Master Thesis

Vincent Janson, Wanja Zaeske

Agenda

Motivation

Background

Approach

Demonstrator

Conclusion

Use-Case: Transport Revolution

Geekwire.com using NASA Illustration | Lillian Gipson

driveteslacanada.ca

Requirements & Wishes

- ✓ Low-power computing platform with highest computing capacity
- √ Versatile platform

- ✓ Increase computing efficiency
- ✓ Simplify AI applications
- Utilize certifiable concepts/solutions
- √ Keep solutions simple
- ✓ Utilize by-default safety

Technical Ingredients

Heterogeneous System-on-chip (SoC)

- CPU for classical software tasks
- Field Programmable Gate Array (FPGA) for programmable hardware acceleration

How to combine both?

Technical Vision

Classical Approach

- Hypervisor/RTOS provides partitioning to applications for isolation/safety
- Partitioning as per DO-178C
- RTOS API as per ARINC 653

Idea

 Extend Hypervisor to use programmable hardware as additional resource

Example Architecture Reconfigurable Computing Hypervisor

- Heterogeneous SoCs (Zynq UltraScale+) as computing platform
- Hypervisor for partitioning, application orchestration and programmable hardware interfacing
- Programmable hardware resources (<u>FPGA</u>) for hardware acceleration
- Reconfiguration of FPGA for adjustments in acceleration demand (different flight phase)

Agenda

Motivation

Background

Approach

Demonstrator

Conclusion

seL4 is a *microkernel* usable in a *hypervisor* configuration

- Lightweight (~ 10k SLOC, compiled into ~200KiB object code)
- Supports ARM v6-v8, RISC-V RV64 & x86 (32 & 64bit)
- High performance
- Implementation formally proven
- Past "academic exercise" status

seL4 - Microkit

- Software Development Kit (SDK) for making seL4 easily usable
 - Introduces thin abstraction layer on top of seL4
 - Creates a bootable seL4 system image
 - Synchronous (Protected Procedure Calls) IPC
 - Asynchronous (Notifications) IPC
- System configuration through static configuration file System Definition File (SDF)
 - Definition of Protection Domains (PD)
 - Memory regions and Memory Management Unit (MMU) on PD granularity
 - Inter-PD communication via communication channels
 - Interrupt handling and delegation to specific PD
 - Scheduling policy for PDs

FPGAs in depth

Logic Blocks

 Fundamental building blocks of an FPGA containing combinational logic and registers

Interconnects

 provide wiring that connects various logic blocks

FPGA (Re-)Configuration

Configuration Memory

- (typically) SRAM memory cells
- bitstream representing configuration is loaded into configuration memory
- →FPGA behavior determined by memory content
- → Change in memory = change of FPGA behavior / configured circuit

→ Reconfiguration

- Changing memory contents during runtime changes FPGA configuration!
- Modern FPGAs support partial bitstream reloading

Aviation Standards

- Guarantee Safety of Software/Hardware/System
 - Safety is represented as a probability of failure
 - Design Assurance Levels (DALs) depending on severity of failure
- Verification Evidence asserts Safety
 - Evidence amount is proportional to DAL

DAL	Severity
Α	Catastrophic
В	Hazardous
С	Major
D	Minor
Е	No Safety Effect

Aviation Standards

Hypervisor

- Dev. process
- HW/SW Interaction

• ...

Hardware (PL) side

- Accelerators
- Management
- Reconfiguration

• ...

Software (PS) side

- seL4
- User applications
- Extension
- ...

Agenda

Motivation

Background

Approach

Demonstrator

Conclusion

Identifying Critical Aspects

Virtualize HW

Accelerators

Accelerator

hosting &

management

Cross Domain Communication

Processing System – Design Questions

- 1. How does a user PD access an accelerator core?
 - a) Directly User PDs access accelerators directly at will
 - Indirectly Accelerators are accessed only via a HW accel. virtualizer

Principle of least privilege / Resource partitioning

- 2. How can this be implemented with seL4/Microkit?
 - a) Add functionality to seL4 kernel directly
 - Outsource functionality to system partition/PD

"A functionality is allowed in the kernel only if it cannot be provided in usermode", Gernot Heiser

Programmable Logic – Components & Hierarchy

- Third party implementation
- Third party with adaption
 - Reconfig: ZyPR [2]
 - Comm: AXI Lite
 - DMA: Alex Forencich [3]
- Thesis implementation
 - Finite State Machine

Envisioned System Architecture

Agenda

Motivation

Background

Approach

Demonstrator

Conclusion

Demonstrator System Architecture

- Limitations
 - No HW accel. reconfiguration
 - Dummy accelerator → simple counter
 - Dummy PDs → just submit jobs/read results
 - DMA → only 64 bytes roundtrip through FPGA

Results

- ✓ Functional behavior as expected
- × Non-functional behavior worse than desired:
 - Delay in PS to PL signaling (AXI register)
 - Delay in PL to PS signaling (IRQ)
 - Slow DMA read/write

Closer look at PL/PS Communication

Lessons Learned & Demonstrator TODOs

- Synchronous debug printing is slow
 - UART-printf @ 115k2 baud caused 41 dB performance attenuation
- Significant overhead per PL/PS communication
 - Larger DMA transfers are advisable
- Microkit is excellent for experimentation
 - Reasonably simple implementation
 - ~ 1.1k SLOC for entire PS
- Logic analyzer is indispensable to debug real-time PL/PS interaction

TODO

- Proper benchmarking & performance tweaking
 - Current DMA implementation reaches ~120 MiB/s, but 380 MiB expected
- Integration of partial bit-stream reloading for PL runtime reconfiguration

Agenda

Motivation

Background

Approach

Demonstrator

Conclusion

Conclusion

Takeaways

- Hypervisor principles are applicable to HW accelerators
- Microkernel approach compatible with use-case
- High performance PL/PS interfaces are tricky

Achievements

- ✓ Low-Latency PL & PS interaction
 - Min roundtrip per accelerator job
 <4µs
- √ Virtualizer for HW. Accelerators
- ✓ Partitioned in HW and SW
 - Aiding certification
- ✓PL-Reconfiguration prepared
 - Implementation pending

Literature

- [1] T. Xia, Y. Tian, J.-C. Prévotet, and F. Nouvel, "Ker-ONE: A new hypervisor managing FPGA reconfigurable accelerators," Journal of Systems Architecture, Article vol. 98, Sep 2019, doi: 10.1016/j.sysarc.2019.05.003.
- [2] Li, Xiangwei & Fei, Cheng & Maskell, Douglas. (2018). FPGA Overlays: Hardware-based Computing for the Masses. 10.15224/978-1-63248-144-3-12.
- [3] Clive Maxfield. The Design Warrior's Guide to FPGAs: Devices, Tools and Flows. Newnes, USA, 1st edition, 2004. ISBN: 0750676043.
- [4] Gernot Heiser and Kevin Elphinstone. L4 Microkernels: The Lessons from 20 Years of Research and Deployment. ACM Trans. Com-put. Syst., 34(1), apr 2016. ISSN: 0734-2071.DOI: 10.1145/2893177.