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What is a system?

seL4

- Composition 
- Internal & external interaction

memory memory
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impl

abstract

design

mathematical structures 
monadic shallow embedding

implementation data structures 
monadic shallow embedding

implementation languages

data refinement

implementation language 
technicalities

What is system verification?

(seL4 verification recap)
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What is system verification?

impl

app

design

impl

app

design

impl

app

design

system
refinement from 
sequential system spec to 
concurrent app specs
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What is system verification?

1. Specification language
- system and application specifications

2. Semantics
- define system states 
- define how they execute

3. Program logic
- reason about applications and systems 
- prove refinement

Interaction trees 
(Xia et al. 2020)

Iris separation logic 
(Jung et al. 2015)
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Specifications as interaction trees

adder EP
recv

adder (epslot replyslot : slot) (sum : word) := 
  x <- ep_recv epslot replyslot ; 
  ep_reply replyslot sum ; 
  adder epslot replyslot (sum + x)
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Specifications as interaction trees

adder EP
recv

adder (epslot replyslot : slot) (sum : word) := 
  x <- ep_recv epslot replyslot ; 
  ep_reply replyslot sum ; 
  adder epslot replyslot (sum + x)

Variant invocation : Type -> Type := 
  | EP_Recv (epslot replyslot : slot) 
    : invocation word 
  | …

ep_recv (epslot replyslot : slot) 
        : itree invocation word := 
  trigger (EP_Recv epslot replyslot)
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Specifications as interaction trees

read+write
adder client I/OEP

recv call

adder (epslot replyslot : slot) (sum : word) := 
  x <- ep_recv epslot replyslot ; 
  ep_reply replyslot sum ; 
  adder epslot replyslot (sum + x)

client (epslot mmioslot : slot) := 
  x <- read mmioslot ; 
  r <- ep_call epslot x ; 
  write mmioslot r ; 
  client epslot mmioslot
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Specifications as interaction trees

read+write
adder client I/OEP

recv call

adder (epslot replyslot : slot) (sum : word) := 
  x <- ep_recv epslot replyslot ; 
  ep_reply replyslot sum ; 
  adder epslot replyslot (sum + x)

client (epslot mmioslot : slot) := 
  x <- read mmioslot ; 
  r <- ep_call epslot x ; 
  write mmioslot r ; 
  client epslot mmioslot

spec (mmioslot : slot) (sum : word) := 
  x <- read mmioobj ; 
  write mmioobj sum ; 
  spec mmioslot (sum + x)

adder || client <= spec
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What is system verification?

1. Specification language
- system and application specifications

2. Semantics
- define system states 
- define how they execute

3. Program logic
- reason about applications and systems 
- prove refinement

Interaction trees 
(Xia et al. 2020)

Iris separation logic 
(Jung et al. 2015)



Matt Brecknell Kry10 12A program logic for seL4 system verification 2025-09-03

System states

Record thread := { 
  prog : itree thread_event void ; 
  caps … 
}.

Record cpu_state := { 
  threads : gmap thread_id thread ; 
  endpoints … 
}.

Record system_state := { 
  cpus : gmap cpu_id cpu_state ; 
  memory … 
}.

system
thread

cpu
endpoint

thread
cpu

endpointmemory
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Semantics as interaction trees

run_cpu (s : cpu_state) : itree cpu_event void.

run_system (s : system_state) : itree system_event void.

system
thread

cpu
endpoint

thread
cpu

endpointmemory

- Interpret seL4 invocations 
- Interleave thread steps 
- Expose memory and I/O operations

- Interpret memory operations 
- Interleave CPU steps 
- Expose I/O operations
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What is system verification?

1. Specification language
- system and application specifications

2. Semantics
- define system states 
- define how they execute

3. Program logic
- reason about applications and systems 
- prove refinement

Interaction trees 
(Xia et al. 2020)

Iris separation logic 
(Jung et al. 2015)
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Program logic

From Iris
- Base logic 
- Step indexed model 
- Resource algebra library 
- Ghost resources 
- Invariants 
- Proof mode 
- Language framework 
- Program logic

New
- Specifications as interaction trees 
- Weakest-precondition program logic 
- seL4-specific assertions and rules
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Program logic

• Ownership assertions

- thread-points-to thread_id |=>thread itree_program
- endpoint-points-to ep_id |=>ep ep_state
- slot-points-to slot_id @ thread_id |=>slot capability

- resources needed to 
execute safely

• Weakest precondition assertion

WP thread_id {{ φ }}



Matt Brecknell Kry10 17A program logic for seL4 system verification 2025-09-03

Program logic

Proof by symbolic execution

ep_obj |=>ep EP_Call_Queue [(tclient, x)]

ep @ tadder |=>slot Cap_EP ep_obj {[EP_Recv]} 
reply @ tadder |=>slot Cap_Null

tadder |=>thread (r <- ep_recv ep reply; k r)

Assume: temporary ownership of kernel objects

Assume: ownership of capability slots

Assume: ownership of the executing program

Goal: prove that tadder is safe to execute
————————————————————————————————————————∗ 
WP tadder {{ False }}
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Program logic

Proof by symbolic execution

ep_obj |=>ep EP_Call_Queue [(tclient, x)]

ep @ tadder |=>slot Cap_EP ep_obj {[EP_Recv]} 
reply @ tadder |=>slot Cap_Null

tadder |=>thread (r <- ep_recv ep reply; k r) 
————————————————————————————————————————∗ 
WP tadder {{ False }}

ep_obj |=>ep EP_Idle

ep @ tadder |=>slot Cap_EP ep_obj {[EP_Recv]} 
reply @ tadder |=>slot Cap_Reply tclient

tadder |=>thread (k x) 
————————————————————————————————————————∗ 
WP tadder {{ False }}
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Program logic — refinement

Every system I/O event can be matched by the specification

⍺0

⍺0 ⍺1 ⍺2 ⍺3

⍺1 ⍺2 ⍺3

specification

system
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• I/O specifications

- exclusive right to perform specified 
sequence of I/O operations

io_spec itree_program

Program logic — refinement

Every system I/O event can be matched by the specification
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io_spec (x <- read mmioobj; kspec x)

mmioslot @ tadder |=>slot Cap_MMIO mmioobj

Assume: ownership of I/O trace specification

Assume: ownership of capability slots

Assume: ownership of the executing program

Goal: prove that tclient is safe to execute

tclient |=>thread (x <- read mmioslot; kclient x)
————————————————————————————————————————∗ 
WP tclient {{ False }}

Program logic — refinement

Every system I/O event can be matched by the specification
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Program logic — refinement

io_spec (x <- read mmioobj; kspec x)

mmioslot @ tadder |=>slot Cap_MMIO mmioobj

tclient |=>thread (x <- read mmioslot; kclient x)
————————————————————————————————————————∗ 
WP tclient {{ False }}

io_spec (kspec x)

mmio @ tadder |=>slot Cap_MMIO mmioobj

tclient |=>thread (kclient x)
————————————————————————————————————————∗ 
WP tclient {{ False }}

Every system I/O event can be matched by the specification
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What is system verification?

1. Specification language
- system and application specifications

2. Semantics
- define system states 
- define how they execute

3. Program logic
- reason about applications and systems 
- prove refinement

Interaction trees 
(Xia et al. 2020)

Iris separation logic 
(Jung et al. 2015)
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Conclusion

- Status
- Implementing semantics and logic for a simplified model of seL4

- Topics for another talk
- Reasoning about shared resources using invariants and ghost resources 
- Robustness: proving properties in the presence of untrusted apps 
- Nondeterminism and failure

- Scalability
- Requires modularity, compositionality, abstraction
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