
Kry10

Matt Brecknell

A program logic for system verification

seL4 Summit — 3 September 2025 — Prague

Funded by the Agentur für Innovation in Cybersicherheit GmbH
Ecosystem of Formally Verifiable IT - Provable Cybersecurity

www.cyberagentur.de/en/programs/evit/

converse◀▶

Matt Brecknell Kry10

seL4

3A program logic for seL4 system verification 2025-09-03

What is a system?

seL4

- Composition
- Internal & external interaction

memory memory

Matt Brecknell Kry10 4A program logic for seL4 system verification 2025-09-03

impl

abstract

design

mathematical structures
monadic shallow embedding

implementation data structures
monadic shallow embedding

implementation languages

data refinement

implementation language
technicalities

What is system verification?

(seL4 verification recap)

Matt Brecknell Kry10 5A program logic for seL4 system verification 2025-09-03

What is system verification?

impl

app

design

impl

app

design

impl

app

design

system
refinement from
sequential system spec to
concurrent app specs

Matt Brecknell Kry10 6A program logic for seL4 system verification 2025-09-03

What is system verification?

1. Specification language
- system and application specifications

2. Semantics
- define system states
- define how they execute

3. Program logic
- reason about applications and systems
- prove refinement

Interaction trees
(Xia et al. 2020)

Iris separation logic
(Jung et al. 2015)

Matt Brecknell Kry10 7A program logic for seL4 system verification 2025-09-03

Specifications as interaction trees

adder EP
recv

adder (epslot replyslot : slot) (sum : word) :=
 x <- ep_recv epslot replyslot ;
 ep_reply replyslot sum ;
 adder epslot replyslot (sum + x)

Matt Brecknell Kry10 8A program logic for seL4 system verification 2025-09-03

Specifications as interaction trees

adder EP
recv

adder (epslot replyslot : slot) (sum : word) :=
 x <- ep_recv epslot replyslot ;
 ep_reply replyslot sum ;
 adder epslot replyslot (sum + x)

Variant invocation : Type -> Type :=
 | EP_Recv (epslot replyslot : slot)
 : invocation word
 | …

ep_recv (epslot replyslot : slot)
 : itree invocation word :=
 trigger (EP_Recv epslot replyslot)

Matt Brecknell Kry10 9A program logic for seL4 system verification 2025-09-03

Specifications as interaction trees

read+write
adder client I/OEP

recv call

adder (epslot replyslot : slot) (sum : word) :=
 x <- ep_recv epslot replyslot ;
 ep_reply replyslot sum ;
 adder epslot replyslot (sum + x)

client (epslot mmioslot : slot) :=
 x <- read mmioslot ;
 r <- ep_call epslot x ;
 write mmioslot r ;
 client epslot mmioslot

Matt Brecknell Kry10 10A program logic for seL4 system verification 2025-09-03

Specifications as interaction trees

read+write
adder client I/OEP

recv call

adder (epslot replyslot : slot) (sum : word) :=
 x <- ep_recv epslot replyslot ;
 ep_reply replyslot sum ;
 adder epslot replyslot (sum + x)

client (epslot mmioslot : slot) :=
 x <- read mmioslot ;
 r <- ep_call epslot x ;
 write mmioslot r ;
 client epslot mmioslot

spec (mmioslot : slot) (sum : word) :=
 x <- read mmioobj ;
 write mmioobj sum ;
 spec mmioslot (sum + x)

adder || client <= spec

Matt Brecknell Kry10 11A program logic for seL4 system verification 2025-09-03

What is system verification?

1. Specification language
- system and application specifications

2. Semantics
- define system states
- define how they execute

3. Program logic
- reason about applications and systems
- prove refinement

Interaction trees
(Xia et al. 2020)

Iris separation logic
(Jung et al. 2015)

Matt Brecknell Kry10 12A program logic for seL4 system verification 2025-09-03

System states

Record thread := {
 prog : itree thread_event void ;
 caps …
}.

Record cpu_state := {
 threads : gmap thread_id thread ;
 endpoints …
}.

Record system_state := {
 cpus : gmap cpu_id cpu_state ;
 memory …
}.

system
thread

cpu
endpoint

thread
cpu

endpointmemory

Matt Brecknell Kry10 13A program logic for seL4 system verification 2025-09-03

Semantics as interaction trees

run_cpu (s : cpu_state) : itree cpu_event void.

run_system (s : system_state) : itree system_event void.

system
thread

cpu
endpoint

thread
cpu

endpointmemory

- Interpret seL4 invocations
- Interleave thread steps
- Expose memory and I/O operations

- Interpret memory operations
- Interleave CPU steps
- Expose I/O operations

Matt Brecknell Kry10 14A program logic for seL4 system verification 2025-09-03

What is system verification?

1. Specification language
- system and application specifications

2. Semantics
- define system states
- define how they execute

3. Program logic
- reason about applications and systems
- prove refinement

Interaction trees
(Xia et al. 2020)

Iris separation logic
(Jung et al. 2015)

Matt Brecknell Kry10 15A program logic for seL4 system verification 2025-09-03

Program logic

From Iris
- Base logic
- Step indexed model
- Resource algebra library
- Ghost resources
- Invariants
- Proof mode
- Language framework
- Program logic

New
- Specifications as interaction trees
- Weakest-precondition program logic
- seL4-specific assertions and rules

Matt Brecknell Kry10 16A program logic for seL4 system verification 2025-09-03

Program logic

• Ownership assertions

- thread-points-to thread_id |=>thread itree_program
- endpoint-points-to ep_id |=>ep ep_state
- slot-points-to slot_id @ thread_id |=>slot capability

- resources needed to
execute safely

• Weakest precondition assertion

WP thread_id {{ φ }}

Matt Brecknell Kry10 17A program logic for seL4 system verification 2025-09-03

Program logic

Proof by symbolic execution

ep_obj |=>ep EP_Call_Queue [(tclient, x)]

ep @ tadder |=>slot Cap_EP ep_obj {[EP_Recv]}
reply @ tadder |=>slot Cap_Null

tadder |=>thread (r <- ep_recv ep reply; k r)

Assume: temporary ownership of kernel objects

Assume: ownership of capability slots

Assume: ownership of the executing program

Goal: prove that tadder is safe to execute
——∗
WP tadder {{ False }}

Matt Brecknell Kry10 18A program logic for seL4 system verification 2025-09-03

Program logic

Proof by symbolic execution

ep_obj |=>ep EP_Call_Queue [(tclient, x)]

ep @ tadder |=>slot Cap_EP ep_obj {[EP_Recv]}
reply @ tadder |=>slot Cap_Null

tadder |=>thread (r <- ep_recv ep reply; k r)
——∗
WP tadder {{ False }}

ep_obj |=>ep EP_Idle

ep @ tadder |=>slot Cap_EP ep_obj {[EP_Recv]}
reply @ tadder |=>slot Cap_Reply tclient

tadder |=>thread (k x)
——∗
WP tadder {{ False }}

Matt Brecknell Kry10 19A program logic for seL4 system verification 2025-09-03

Program logic — refinement

Every system I/O event can be matched by the specification

⍺0

⍺0 ⍺1 ⍺2 ⍺3

⍺1 ⍺2 ⍺3

specification

system

Matt Brecknell Kry10 20A program logic for seL4 system verification 2025-09-03

• I/O specifications

- exclusive right to perform specified
sequence of I/O operations

io_spec itree_program

Program logic — refinement

Every system I/O event can be matched by the specification

Matt Brecknell Kry10 21A program logic for seL4 system verification 2025-09-03

io_spec (x <- read mmioobj; kspec x)

mmioslot @ tadder |=>slot Cap_MMIO mmioobj

Assume: ownership of I/O trace specification

Assume: ownership of capability slots

Assume: ownership of the executing program

Goal: prove that tclient is safe to execute

tclient |=>thread (x <- read mmioslot; kclient x)
——∗
WP tclient {{ False }}

Program logic — refinement

Every system I/O event can be matched by the specification

Matt Brecknell Kry10 22A program logic for seL4 system verification 2025-09-03

Program logic — refinement

io_spec (x <- read mmioobj; kspec x)

mmioslot @ tadder |=>slot Cap_MMIO mmioobj

tclient |=>thread (x <- read mmioslot; kclient x)
——∗
WP tclient {{ False }}

io_spec (kspec x)

mmio @ tadder |=>slot Cap_MMIO mmioobj

tclient |=>thread (kclient x)
——∗
WP tclient {{ False }}

Every system I/O event can be matched by the specification

Matt Brecknell Kry10 23A program logic for seL4 system verification 2025-09-03

What is system verification?

1. Specification language
- system and application specifications

2. Semantics
- define system states
- define how they execute

3. Program logic
- reason about applications and systems
- prove refinement

Interaction trees
(Xia et al. 2020)

Iris separation logic
(Jung et al. 2015)

Matt Brecknell Kry10 24A program logic for seL4 system verification 2025-09-03

Conclusion

- Status
- Implementing semantics and logic for a simplified model of seL4

- Topics for another talk
- Reasoning about shared resources using invariants and ghost resources
- Robustness: proving properties in the presence of untrusted apps
- Nondeterminism and failure

- Scalability
- Requires modularity, compositionality, abstraction

Funded by the Agentur für Innovation in Cybersicherheit GmbH
Ecosystem of Formally Verifiable IT - Provable Cybersecurity

www.cyberagentur.de/en/programs/evit/

converse◀▶

