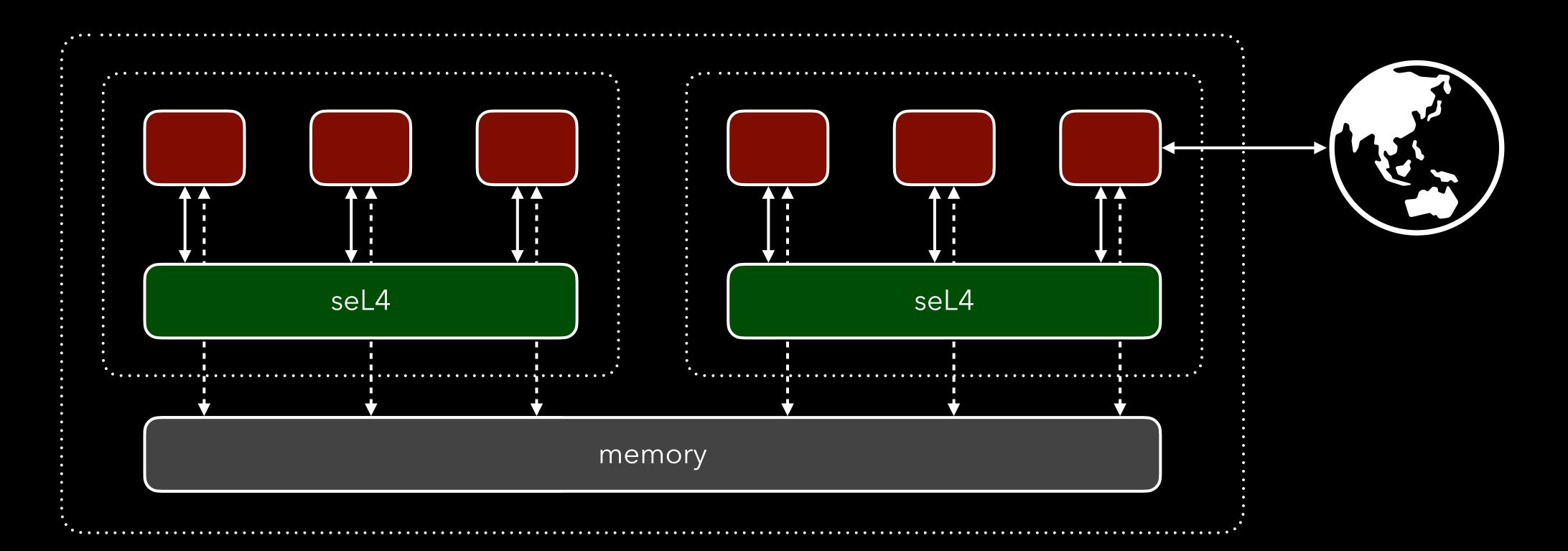


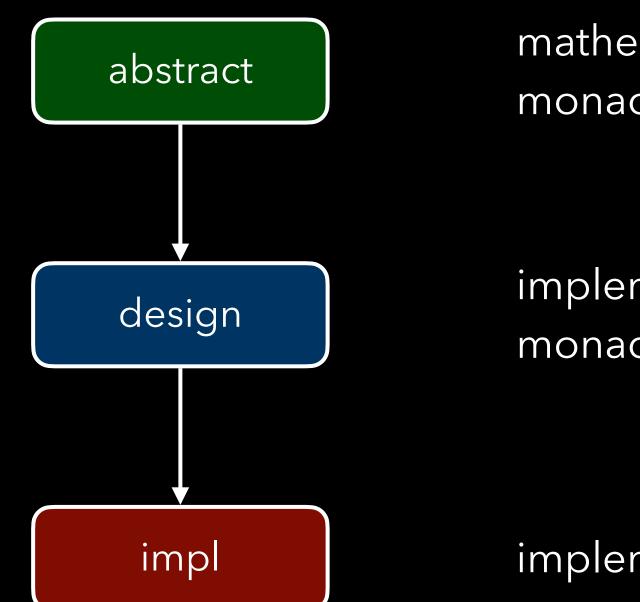
A program logic for system verification

Matt Brecknell

Kry10


Funded by the Agentur für Innovation in Cybersicherheit GmbH Ecosystem of Formally Verifiable IT - Provable Cybersecurity

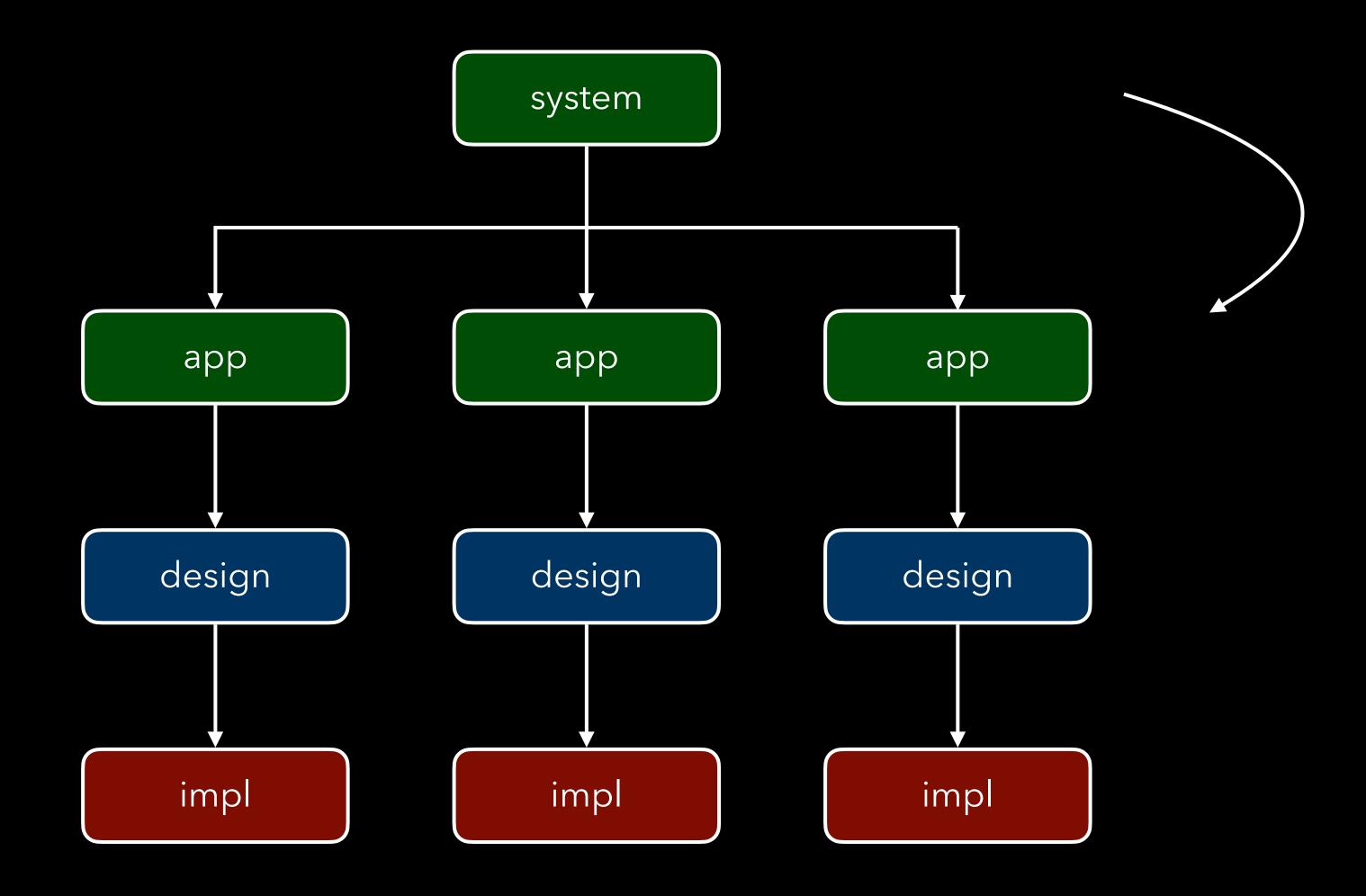
www.cyberagentur.de/en/programs/evit/



What is a system?

- Composition
- Internal & external interaction

(seL4 verification recap)


mathematical structures monadic shallow embedding

implementation data structures monadic shallow embedding

implementation languages

data refinement

implementation language technicalities

refinement from sequential system spec to concurrent app specs

A program logic for seL4 system verification

- Specification language
 - system and application specifications
- Semantics
 - define system states
 - define how they execute
- Program logic
 - reason about applications and systems
 - prove refinement

Interaction trees (Xia et al. 2020)

Iris separation logic (Jung et al. 2015)

Specifications as interaction trees


```
adder (ep<sub>slot</sub> reply<sub>slot</sub> : slot) (sum : word) :=
  x ← ep_recv ep<sub>slot</sub> reply<sub>slot</sub> ;
  ep_reply reply<sub>slot</sub> sum ;
  adder ep<sub>slot</sub> reply<sub>slot</sub> (sum + x)
```

A program logic for seL4 system verification Matt Brecknell Kry10 2025-09-03

Specifications as interaction trees

```
recv
adder
```

```
adder (ep_{slot} reply_{slot} : slot) (sum : word) :=
   x \leftarrow ep\_recv ep_{slot} reply_{slot};
   ep_reply reply<sub>slot</sub> sum ;
   adder ep_{slot} reply<sub>slot</sub> (sum + x)
```

```
Variant invocation : Type \rightarrow Type :=
  | EP_Recv (ep<sub>slot</sub> reply<sub>slot</sub> : slot)
      : invocation word
ep_recv (ep<sub>slot</sub> reply<sub>slot</sub> : slot)
           : itree invocation word :=
  trigger (EP_Recv epslot replyslot)
```

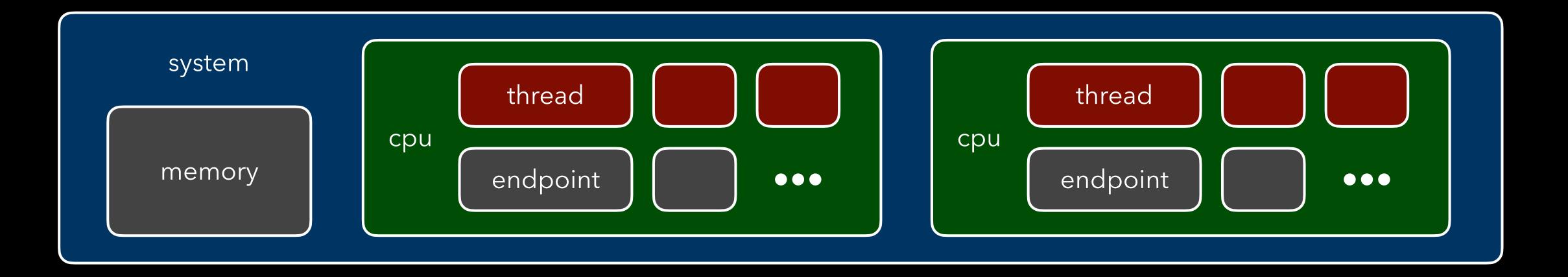


```
adder (ep_{slot} reply_{slot} : slot) (sum : word) :=
                                                                                     client (ep_{slot} mmio<sub>slot</sub>: slot) :=
                                                                                        x \leftarrow \text{read mmio}_{\text{slot}};
   x \leftarrow ep\_recv ep_{slot} reply_{slot};
   ep_reply reply<sub>slot</sub> sum ;
                                                                                        r \leftarrow ep\_call ep_{slot} x;
   adder ep_{slot} reply<sub>slot</sub> (sum + x)
                                                                                        write mmio<sub>slot</sub> r;
                                                                                        client ep<sub>slot</sub> mmio<sub>slot</sub>
```

Specifications as interaction trees

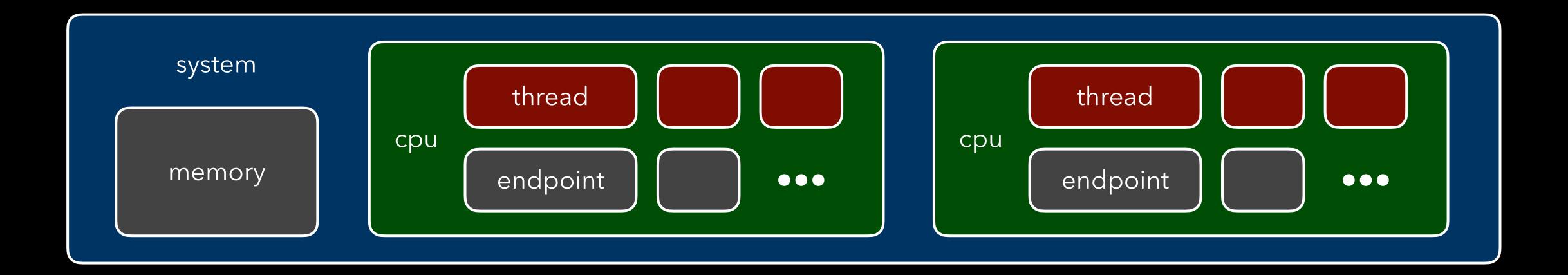
```
read+write
                                                    call
                    recv
adder
                                                                     client
                                                                                                         1/0
```

```
adder (ep_{slot} reply_{slot} : slot) (sum : word) :=
                                                                             client (ep_{slot} mmio<sub>slot</sub>: slot) :=
                                                                                x \leftarrow \text{read mmio}_{\text{slot}};
   x \leftarrow ep\_recv ep_{slot} reply_{slot};
   ep_reply reply<sub>slot</sub> sum ;
                                                                                r \leftarrow ep_{call} ep_{slot} x;
   adder ep_{slot} reply<sub>slot</sub> (sum + x)
                                                                                write mmio<sub>slot</sub> r;
                                                                                 client ep<sub>slot</sub> mmio<sub>slot</sub>
spec (mmio_{slot} : slot) (sum : word) :=
                                                                             adder || client ≤ spec
   x \leftarrow \text{read mmio}_{obj};
  write mmioobj sum ;
   spec mmio_{slot} (sum + x)
```


- Specification language
 - system and application specifications
- Semantics
 - define system states
 - define how they execute
- Program logic
 - reason about applications and systems
 - prove refinement

Interaction trees (Xia et al. 2020)

Iris separation logic (Jung et al. 2015)


System states


```
Record thread := {
  prog : itree thread_event void ;
  caps ...
Record system_state := {
  cpus : gmap cpu_id cpu_state ;
  memory ...
```

```
Record cpu_state := {
  threads : gmap thread_id thread ;
  endpoints ...
```

Semantics as interaction trees

run_cpu (s : cpu_state) : itree cpu_event void.

- Interpret seL4 invocations
- Interleave thread steps
- Expose memory and I/O operations

run_system (s : system_state) : itree system_event void.

- Interpret memory operations
- Interleave CPU steps
- Expose I/O operations

- Specification language
 - system and application specifications
- Semantics
 - define system states
 - define how they execute
- Program logic
 - reason about applications and systems
 - prove refinement

Interaction trees (Xia et al. 2020)

Iris separation logic (Jung et al. 2015)

Program logic

From Iris

- Base logic
- Step indexed model
- Resource algebra library
- Ghost resources
- Invariants
- Proof mode
- Language framework
- Program logic

New

- Specifications as interaction trees

A program logic for seL4 system verification

- Weakest-precondition program logic
- seL4-specific assertions and rules

Program logic

- Ownership assertions
 - thread-points-to
 - endpoint-points-to
 - slot-points-to

 $thread_id \mapsto_{thread} itree_program$ $ep_id \Longrightarrow_{ep} ep_state$

 $slot_id \ 0 \ thread_id \ \Longrightarrow_{slot} \ capability$

- Weakest precondition assertion
 - resources needed to execute safely

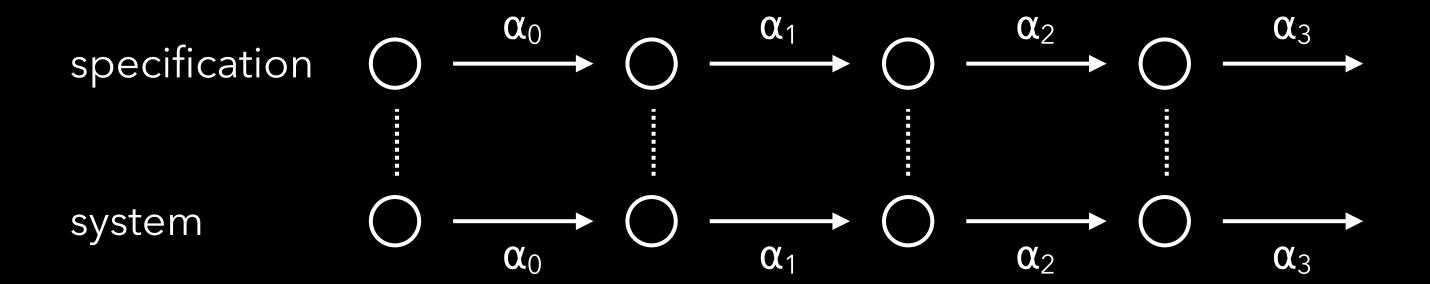
WP $thread_id$ {{ ϕ }}

Proof by symbolic execution

```
ep_{obj} \mapsto_{ep} EP_{Call_Queue} [(t_{client}, x)]

    Assume: temporary ownership of kernel objects

ep @ t_{adder} \mapsto_{slot} Cap_EP ep_obj {[EP_Recv]}
                                                             Assume: ownership of capability slots
reply a t_{adder} \mapsto_{slot} Cap_Null
t_{adder} \mapsto_{thread} (r \leftarrow ep\_recv ep\_reply; k r) \leftarrow Assume: ownership of the executing program
WP t<sub>adder</sub> {{ False }}
                                                                    Goal: prove that t_{adder} is safe to execute
```


Program logic

Proof by symbolic execution

```
ep_{obj} \mapsto_{ep} EP_{call}Queue [(t_{client}, x)]
ep \mathfrak{d} t_{adder} \mapsto_{slot} Cap_EP ep_obj \{[EP_Recv]\}
reply 0 t_{adder} \mapsto_{slot} Cap_Null
t_{adder} \mapsto_{thread} (r \leftarrow ep\_recv ep reply; k r)
WP t<sub>adder</sub> {{ False }}
```

```
ep_obj \mapsto_{ep} EP_Idle
ep @ t_{adder} \mapsto_{slot} Cap_EP_ep_obj {[EP_Recv]}
reply 0 t_{adder} \mapsto_{slot} Cap_{eply} t_{client}
t_{adder} \mapsto_{thread} (k x)
WP t<sub>adder</sub> {{ False }}
```

Every system I/O event can be matched by the specification

Every system I/O event can be matched by the specification

- I/O specifications
 - exclusive right to perform specified sequence of I/O operations

io_spec itree_program

A program logic for seL4 system verification

Every system I/O event can be matched by the specification

```
io_spec (x \leftarrow read mmio<sub>obj</sub>; k_{spec} x)
                                                                           Assume: ownership of I/O trace specification
mmio_{slot} a t_{adder} \mapsto_{slot} Cap\_MMIO mmio_{obj}

    Assume: ownership of capability slots

t_{client} \mapsto_{thread} (x \leftarrow read mmio_{slot}; k_{client} x)
                                                                           Assume: ownership of the executing program
WP t<sub>client</sub> {{ False }}
                                                                           Goal: prove that t_{client} is safe to execute
```

Every system I/O event can be matched by the specification

```
io_spec (x \leftarrow read mmio<sub>obj</sub>; k_{spec} x)
                                                                                  io_spec (k<sub>spec</sub> x)
mmio_{slot} 0 t_{adder} \mapsto_{slot} Cap\_MMIO mmio_{obj}
                                                                                  mmio @ t_{adder} \mapsto_{slot} Cap\_MMIO mmio_{obj}
t_{client} \mapsto_{thread} (x \leftarrow read mmio_{slot}; k_{client} x)
                                                                                  t_{client} \mapsto_{thread} (k_{client} x)
WP t<sub>client</sub> {{ False }}
                                                                                  WP t<sub>client</sub> {{ False }}
```

- Specification language
 - system and application specifications
- Semantics
 - define system states
 - define how they execute
- Program logic
 - reason about applications and systems
 - prove refinement

Interaction trees (Xia et al. 2020)

Iris separation logic (Jung et al. 2015)

A program logic for seL4 system verification

- Status
 - Implementing semantics and logic for a simplified model of seL4
- Topics for another talk
 - Reasoning about shared resources using invariants and ghost resources
 - Robustness: proving properties in the presence of untrusted apps
 - Nondeterminism and failure
- Scalability
 - Requires modularity, compositionality, abstraction

Funded by the Agentur für Innovation in Cybersicherheit GmbH Ecosystem of Formally Verifiable IT - Provable Cybersecurity

www.cyberagentur.de/en/programs/evit/

