o 4

4

A program logic for system verification

Matt Brecknell
Kry10

seL4 Summit — 3 September 2025 — Prague

<) converse

Funded by the Agentur fir Innovation in Cybersicherheit GmbH
Ecosystem of Formally Veritiable IT - Provable Cybersecurity

www.cyberagentur.de/en/programs/evit/

Al
4 I<IL=10

A program logic for seL4 system verification Matt Brecknell Kry10 2025-09-03 3

What is a system?

- Composition
- Internal & external interaction

A program logic for seL4 system verification Matt Brecknell Kry10 2025-09-03 4

What is system verification?

(selL4 verification recap)

[J mathematical structures
abstract , ,
monadic shallow embedding

data refinement

\ 4
[,] implementation data structures
design . .
monadic shallow embedding
implementation language
| technicalities

{ impl J implementation languages

What is system verification?

system
l | |
[app J app [app J
\ 4 \ 4 \ 4
[design] design [design]
\ 4 \ 4 \ 4
{ impl J impl { impl J

A program logic for seL4 system verification Matt Brecknell Kry10

refinement from
sequential system spec to
concurrent app specs

2025-09-03

5

A program logic for seL4 system verification Matt Brecknell Kry10 2025-09-03 6

What is system verification?

1. Specitication language
- system and application specifications

Interaction trees

2 Semantics (Xia et al. 2020)
- define system states
- define how they execute #ROCQ
/
3. Program logic - lIris separation logic
- reason about applications and systems (Jung et al. 2015)

- prove refinement

A program logic for selL4 system verification Matt Brecknell Kry10 2025-09-03 7

Specifications as interaction trees

recv

[adder } » EP

adder (ep.o: replyqge: ¢ slot) (sum : word) :=
X € ep_recv epsot replysot ;
ep_reply replygo sum ;
adder epgo replygo (sum + X)

A program logic for seL4 system verification Matt Brecknell Kry10 2025-09-03 8

Specifications as interaction trees

) recv
[adder » EP
)
adder (epsor replysor ¢ slot) (sum : word) := Variant invocation : Type — Type :=
X & ep _recv epgo replVeo ; | EP_Recv (epsot replysor : slot)
ep_reply replyse sum ; : 1nvocation word

adder epgor replyse (sum + x) | ...

ep_recv (epsot replyso: : slot)
1tree invocation word :=
trigger (EP_Recv epsot replysor)

A program logic for selL4 system verification Matt Brecknell Kry10 2025-09-03 9

Specifications as interaction trees

adder (ep.o: replyqge: ¢ slot) (sum : word) := client (epgor MMioge: : Slot) :=
X €= ep_recv epsot replvysot ; X ¢ read mmiloge: ;
ep_reply replygor Sum ; r < ep_call epgot X ;
adder epgo replygo (sum + X) write mmioge: T ;

client epsor MM1O0got

adder (epso: replygot :

spec (mmioge: :

Specifications as interaction trees

A program logic for selL4 system verification Matt Brecknell

X € ep_recv epsot replysot ;
ep reply replysot sum ;
adder epgot replyse (sum + x)

slot) (sum
X ¢ read mmiloep ;
write mmilo.s sum ;

spec mmioge: (sum + x)

slot) (sum

word) :=

word) :=

client (epsiot MM1Ogot :
X ¢ read mmloge: ;
r < ep call epgot X ;
write mmiloOge: I
client epsor MM1O0got

adder || client < spec

slot) :

Kry10

2025-09-03

10

A program logic for selL4 system verification Matt Brecknell Kry10 2025-09-03 11

What is system verification?

1. Specitication language
- system and application specifications

Interaction trees

2 Semantics (Xia et al. 2020)
- define system states
- define how they execute #ROCQ
/
3. Program logic - lIris separation logic
- reason about applications and systems (Jung et al. 2015)

- prove refinement

A program logic for selL4 system verification Matt Brecknell Kry10 2025-09-03 12

System states

()
system !) [)
| =000 | OO
cpu cpu
memory [endpoint J [J ooo [endpoint J [J ooo
_ J _ y, _ y,
o _
Record thread := { Record cpu state := {
prog : 1tree thread event void ; threads : gmap thread _1d thread ;
caps .. endpoints ..
}. }.
Record = {
cpus : gmap cpu_1d cpu_state ;
memory ..

b

Semantics as interaction trees

A program logic for seL4 system verification Matt Brecknell Kry10

2025-09-03

system

e J

e L

Interpret memory operations
Interleave CPU steps
Expose |/O operations

cpu cpu
memory [endpoint J [J ooo [endpoint J [J ooo
\ . . . W,

- .
run_cpu (s : cpu_state) : itree cpu _event void.

- Interpret seL4 invocations

- Interleave thread steps

- Expose memory and |I/O operations
run_system (s :) : itree void.

13

A program logic for selL4 system verification Matt Brecknell Kry10 2025-09-03 14

What is system verification?

1. Specitication language
- system and application specifications

Interaction trees

2 Semantics (Xia et al. 2020)
- define system states
- define how they execute #ROCQ
/
3. Program logic - lIris separation logic
- reason about applications and systems (Jung et al. 2015)

- prove refinement

A program logic for seL4 system verification Matt Brecknell Kry10 2025-09-03 15

Program logic

From Iris New

- Base logic - Specifications as interaction trees

- Step indexed model - Weakest-precondition program logic
- Resource algebra library - sel4-specific assertions and rules

- Ghost resources
- Invariants
- Proof mode

A program logic for seL4 system verification Matt Brecknell Kry10 2025-09-03 16

Program logic

e (Ownership assertions

- thread—points—to thread_id F=thread itree_program
- endpoint-points-to ep_id =, ep_state
- slot-points-to slot_id @ thread_id =0 capability

e \Weakest precondition assertion

- resources needed to WP thread_id {{ ¢ }}
execute safely

A program logic for selL4 system verification Matt Brecknell Kry10 2025-09-03 17

Program logic

Proof by symbolic execution

ep_obj =, EP_Call_Queue [(taient, X)] «—— Assume: temporary ownership of kernel objects

ep @ tadder Fsot Cap_EP ep_obj {[EP_Recv]}

«— Assume: ownership of capability slots
reply @ taidder F=siot Cap_Null

tadder FPthread (r ¢ ep_recv ep reply; k r) «— Assume: ownership of the executing program
*

WP t.4uer {{ False }} «—— Goal: prove that t,q4e is safe to execute

A program logic for seL4 system verification Matt Brecknell Kry10 2025-09-03 18

Program logic

Proof by symbolic execution

ep_obj =, EP_Call_Queue [(taen, X)] ep_obj =, EP_Idle
ep @ tadder st Cap_EP ep_obj {[EP_Recv]} ep @ tadder <0t Cap_EP ep_obj {[EP_Recv]}
I'eply ED tadder :slot Cap_NU-L-L Teply a) tadder =>s|ot Cap_Reply tclient
tadder ;’thread (r — ep_l"eCV ep Teply; k]f') tadder =>thread (k X)
* *

WP tadder {{ False }} WP tadder {{ False }}

A program logic for selL4 system verification Matt Brecknell Kry10 2025-09-03 19

Program logic — refinement

Every system I/O event can be matched by the specification

0 0 3

2
- O .

o
specification () N O s O

system O ao»O 1»0 2»0 0(3>

0 0

A program logic for selL4 system verification Matt Brecknell

Program logic — refinement

Every system I/O event can be matched by the specification

e |/O specifications

- exclusive right to perform specitied i0_spec itree_program
sequence of I/O operations

Kry10

2025-09-03

20

A program logic for selL4 system verification Matt Brecknell Kry10 2025-09-03 21

Program logic — refinement

Every system I/O event can be matched by the specification

io_spec (x ¢ read mmioon; Kspec X) «—— Assume: ownership of I/O trace specification

MM10go: @ Tadder FPslot CAP_MMIO mm10op, «— Assume: ownership of capability slots

teliont FPthread (X ¢ read mmio.e:; Keient X) «— Assume: ownership of the executing program
X

WP t..: 11 False }} «—— Goal: prove that tgien: is safe to execute

A program logic for selL4 system verification Matt Brecknell Kry10 2025-09-03 22

Program logic — refinement

Every system I/O event can be matched by the specification

io_spec (x ¢ read mmiogy; Kspec X) io_spec (Kspec X)
MM10sot @ tadder Fsiot CAP_MMIO mm10,p, MM1i0 @ tidder FPslot CAp_MMIO mm1o0,p,
Cclient F=thread (X < read mmiOslot; I<c:Iien’c X) Cclient F=thread (kclient X)
X X

WP tclient {{ False }} WP tclient {{ False }}

A program logic for seL4 system verification Matt Brecknell Kry10 2025-09-03 23

What is system verification?

1. Specitication language
- system and application specifications

Interaction trees

2 Semantics (Xia et al. 2020)
- define system states
- define how they execute #ROCQ
/
3. Program logic - lIris separation logic
- reason about applications and systems (Jung et al. 2015)

- prove refinement

A program logic for selL4 system verification Matt Brecknell Kry10 2025-09-03 24

Conclusion

- Status

- Implementing semantics and logic for a simplified model of selL4

- Topics for another talk

- Reasoning about shared resources using invariants and ghost resources
- Robustness: proving properties in the presence of untrusted apps
- Nondeterminism and failure

- Scalability

- Requires modularity, compositionality, abstraction

<) converse

Funded by the Agentur fir Innovation in Cybersicherheit GmbH
Ecosystem of Formally Veritiable IT - Provable Cybersecurity

www.cyberagentur.de/en/programs/evit/

Al
4 I<IL=10

