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Satellite Systems are Valuable
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Salt Typhoon Hackers Are Back, Recently
Targeted Satellite Internet Service Viasat

Viasat isn't divulging details about the hack. But Bloomberg reports the intrusion has been linked
to the notorious Chinese state-sponsored hacking group called 'Salt Typhoon.
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GPS Jamming in Strait of Hormuz Raises Maritime Safety Concerns
After Tanker Collision

Mike Schule:
Total View

Share this article

Asignificant increase in GPS jamming and spoofing incidents along the Iranian coast is raising
serious concerns about maritime safety in one of the world's most critical shipping channels.
According to the Maritime Information Cooperation & Awareness Center (MICA),
approximately 970 ships per day have experienced GPS interference in the region since June
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OneWeb launches alternative navigation service amid GPS

vulnerability concerns

The new service is avallable from OneWeb Technologies, the company's U.S. proxy. OneWeb Technologies is In the process of merging with

Eutelsat America Corp.

by Sandra Erwin  September 10, 2024
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Chinese Satellite Targets Starlink With Laser
Strike From 36,000 km—What It Means for

Space Security

The AO-MDR synergy technique overcomes atmospheric turbulence, making transmissions
clear and reliable

By Vinay Patel X @VinayPBPatel
Published 23 June 2025, 3:29 PM BST

atellite

ntarmnat
IEEE Spectrum White Hat Hackers Expose Iridium Satellite Security Fla... ~ Q Type tosearch

White Hat Hackers Expose Iridium Satellite
Security Flaws >Users’ locations and texts can be
intercepted, including those of DoD employees

BY TEREZA PULTAROVA | 12 FEB 2025 | 4 MIN READ | [

Tereza Pultarova Is a London-based journallst specializing in aerospace and defense technologies.
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Challenges of Space System Survival
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selL4 provides capabilities and performant IPC,
upon which we build a set of independent system services
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@ Our Approach
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@[ Outline

Motivation
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Mission Application: cFS
Porting cFS to selL4

Evaluation

Lessons Learned
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@[ Purpose of Flight Software

Radio Navigation
Frequency & Control
Command Guidance

& Data

Handling
Power Instrument/
Control Sensor
Handling

Flight software is the (ideally resilient) real-time “brain” that controls mission operations
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I&] NASA'’s core Flight System (cFS)

* Widely used flight software framework m
and application suite —+

Instrument
Manager

Mass
Storage
File System

« Canonical open-source choice for
academic research & government use

 Designed as areusable application
layer for space system command and
control, providing navigation,
guidance, etc. in common modules

The cFS architecture creates a Flight
Software “App Store”.

Inter-task Message Router (Software Bus]

1553 Bus | Telemetry | | Command
Support ) Output Ingest

Commands

Q cFS Applications 1 Communication
1553 Interfaces

O Mission Applications Hardware Real-time Telemetry
File downlink

O Core Services/Applications
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& NASA cFS’ Heritage Story

core Flight - GPM launch cFS
» c -
SAMPEX Executive (cFE) open sourcing
(8/92) developed open-sourced planned
1990s ‘ 2010 2014 /W
2007 ‘ 2011 |
“Clone and Initial cFS LADEE launch
own” software applications
development developed
LRO
(2009 launch)
orting Magn efite- GPM: Global Precipitation M t LRO: Lunar R i Orbit
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Used on more than 40 projects, including
landers, orbiters, unnamed aerial vehicles,
space suits, crew habitats, rovers, satellites

v&‘ 1

Roman Space
Telescope



@ cFS Design and Structure

M-ission Mission Mission Mission Mission and cFS
Library WD App 2 App N Application Layer

cFE Core

Layer
Portability layer,

rdware, OSes [ crepspAPl ||
hardware, OSes :
Abstraction
Board Support RTOS /BOOT
Package Layer
|:| Mission Developed
- Open source
PROM Boot FSW I 3¢Party
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@[ cFS Design Observations

No usage of heap memory
— Common in real time applications to help with predictability
— Instead MANY global variables are used

cFS is one address space with many threads
— Each app has at least one thread
— Extensive use of memory spaces that are shared between threads

Apps are dynamic

— Expect to be able to start and stop components

— Can be stopped and started at runtime (by other components or the ground)
— Can be added and removed at runtime (using dynamic libraries)

Availability is an overarching priority
— Mutexes are reentrant
— Many operations have timeouts
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@[ Outline

Motivation

Mission Application: cFS
Porting cFS to selL4

!

Evaluation

Lessons Learned
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@ Analysis of NASA’s cFS

« Applications rely on an OS Abstraction Layer, which then calls the underlying OS functionality
* This eases porting, as OS-specific functionality is implemented in only one place

« OS Abstraction Layer consists of about 100 API calls

O, b
_ A [ debug_printin( ]

Fault Recovery T~

* Functionality Expected:

cFS’s OS Abstraction Layer requires significant functionality from an underlying system
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@ Dynamism Mismatch

cFS is surprisingly dynamic
— Apps can be started and stopped
— Apps can be added and removed at runtime

Resources required by the system change at runtime
— Threads, mutexes, semaphores, channels, timers, memory

Much prior work on selL4 assumes static resource allocation
— CAmMKES, Microkit, others

Initial Solution: Dynamically instrument cFS to find a typical upper bound on resource usage

Final Solution: Create a solution supporting dynamic creation of resources

Payload Application v1 Payload Application v2

File Manager

CFDP

Apps

Table Services

Executive Services

Time

LINCOLN LABORATORY
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@ Initial Proof of Concept

 Built on CAmMKES and unverified
selL4 C libraries

 Hardcoded the apps that started,
preventing the runtime startup of apps

« Stubbed out OSAL APIs where possible
* Required features leaned on C libraries

 Particular difficulty with semaphores,
mutexes, setting estimated ceiling on
resources

Difficulty of resource management and lack of
dynamism motivates the need for an actual OS

cFS —

Applications __ CcFEApps

App Library '
Core Flight cFE API
Executive
cFE
Platform OSAL API PSP API

Abstraction Minimal Minimal Support

Support for ZC702

Unverified selL4 C libraries

Developed CAmMKES
at LL
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@ Designing an OS for cFS

N/

MAGNETITE

Clock Time Console

Message

Timebase

(Timers*) R

S NASA core Flight System

Counting Synchrorrlzauon Timer Service Logging Service | Channel Service
Semaphores Service

. . Threads &
Re-entrant Ethernet Service | Network Service Event Service Processes

Mutexes

- - = Feature needed by OSAL

Magnetite is the Operating System that resulted from this process
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@ Secure Design Principles M

MAGNETITE

Decentralization of Principle of least Built upon formal
responsibility privilege methods foundation

NASA core Flight System

Synchronization

. Timer Service Logging Service | Channel Service
Service
] . . Threads &
Ethernet Service | Network Service Event Service Processes

“ﬂl‘ Formally verified microkernel

Hardware

Security-first principles informed initial system service design and that of our resulting OS
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JF 09/2025 * One'ShOt and recu"'lng MASSACHUSETTS INSTITUTE OF TECHNOLOGY



@ Magnetite Development Timeline M

MAGNETITE

ODROID-H TX2
cFS deployed First NASA
on dozens of cFS Demo

space missions

selL4 building, ELF

capability and loading, cFS Silos x86-64

IPC handling integration | introduced

2022 2024
2023 2025

SmallSat v4-v6 v7 v8 | | vo
Guidelines
Research

Services Developed

v1: timer, channel, event, sync v6: 12C
v2-3: shared memory, signal, UART v7: cross-silo networking, iy 1) ’
logging, NVM, principles ticker ‘ ]
PolarFire i
va: file system v8: boot VCK190 Kria K24
) . ELF: E tabl d Linkable Fi t
?ﬁrggﬁcﬂ?"em& 2 IPC: In:(eer‘-::rzc:sanorrl::nsnisat;rr'\na LINCOLN LABORATORY
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Performance Microbenchmarks

N\

MAGNETITE

Overhead Measurements (Cycles)

Real-Time Patched Linux Magnetite (2021) Magnetite (2022)

Context Switch: Thread

Context Switch: Process
Round Trip IPC

Event Latency: equal prio
Event Latency: L2H prio
Event Latency: H2L prio

Mutex Uncontended
Mutex Contended

Semaphore Uncontended
Semaphore Contended

Timer Latency
Timer Latency w/ timerfd

Channel Latency: L2H prio
Channel Latency: H2L prio
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4,816

217
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116
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404
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1,077
4,858

217
16,263

116
6,994

21,171
6,842

9,627
11,711

3,232
17,919

328
30,570

9,112
22,136

33,118
14,806

22,671
71,169

542
542
989

11,504
11,407
16,585

9,959
13,053

9,051
11,430

16,042

23,749
24,839

12
1

175
176
222

184
234

179
217

203

230
229

563
564
1,027

11,801
11,702
16,953

10,270
13,440

9,357
11,791

16,381

24,138
25,222

597
703
1,113

12,247
12,233
18,160

11,165
13,918

9,792
12,384

17,317

25,678
27,806

504
498
1,136

8,788
8,790
14,138

6,301
15,574

5,360
11,661

12,202

18,367
18,505

1
3

185
181
292

292
285

200
250

210

286
273

504
498
1,137

9,095
9,093
14,613

6,745
16,042

5,689
12,070

12,536

18,850
18,983

550
599
1,241

10,393
9,870
17,614

8,615
17,394

6,348
12,741

13,907

20,038
20,271

Microbenchmarks show resource primitives to be performant, with improvement over time
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@[ Outline

Motivation

Mission Application: cFS

Porting cFS to an OS on selL4

Evaluation

‘  Lessons Learned
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@ Lessons Learned: Space Software is Dynamic

« Space Flight Software has significant dynamism
— Apps can be started or stopped, added or removed from the system
— Functionality can be enabled or disabled at runtime
— Partial updates are common

* This leads to changes in system configuration and resource usage at runtime

« Static system configurations are inadequate
— Would require many system images which is complex to create
— Low bitrates mean sending those images is expensive
— Updates are considered risky in space

Space software requires an operating system that can create
new dynamic system configurations and resources

Porting Magnetite- 24 LINCOLN LABORATORY

JF 09/2025 MASSACHUSETTS INSTITUTE OF TECHNOLOGY



@[ Lessons Learned: Minimizing Temporal Trust

Linux Processes Self-Contained Processes
Process List Memory Process List Process 1
Management
Memory Pages
Memory
Capabilities Management
Memory Pages
Memory Pages
Capabilities

* Privileged system processes manage user + Self-owned memory and capabilities
process memory and capabilities - System services, like memory management,

» User processes are captive in trust to the OS only borrow needed capabilities

* Privilege is centralized and compromise * Intentional decentralization of privilege
spreads .

System services are only trusted at use time
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Lessons Learned: Minimizing Temporal Trust

Self-Contained Processes

Escrow Processes

x—— e

Process List

Process 1 Process List

Memory Pages

Capabilities

Escrow Process

Memory Pages

Capabilities

Memory Memory

Management

Process 2

Management

Process 2

Memory Pages

Memory Pages

Capabilities

Escrow Process

Capabilities

* Issue: Processes can rearrange their cspace to  Hold process capabilities “in escrow”
prevent memory reclamation - User process - system service requests that

* Deleting a cspace does not delete ones within use cspace capabilities pass through an escrow
it, making them unreachable process

+ Reidentifying a capability is a storage side  Minimal trust needed between user processes
channel and services (and vice versa)
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@ From an Operating System to a Distributed System

Difficult to define
dependencies

— Potential for
Difficult to order deadlock

events and timing

Network
service

Signal service

Cross-Silo Chan_nel
Logging service service

Timer service UART Logging
service

Ethernet
service

Escrow service

—— Shared Mem Synchron ization
rinciple Channel service service
service T '

Difficult to resolve
state inconsistencies

Note: Arrows read as “depends upon.” This uses the older

Difficult to serialize data Magnetite v3.0 to provide notional examples of dependencies

A microkernel approach with many services brings with it all the classic problems from
distributed systems
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@ Conclusion

Flight software is critical in bringing satellites to life and ensuring they stay in an
operational state during their missions

Decades of space excursions have relied upon very stovepiped, tightly coupled
software-hardware solutions

However, with space being an increasingly accessible operating environment and
therefore a tantalizing target, flight software needs to run on a secure foundation

cFS, a more modularly designed modern FSW solution, was selected and we studied
the minimum resources it needed to operate

Through the process of porting cFS to selL4 (really Magnetite OS), we learned lessons
about the surprising dynamism of space FSW, how to minimize trust, and the
difficulties of distributed systems as applied to OSes
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Juliana Furgala
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@ cFS Mission Directory Structure

cFS Distribution

— — — —

apps cfe osal tools

Ground

Each app is cFE OSAL
in a separate ’J— source ’J— source H— and build ’J—
B tools B

subdirectory | -

| - files | - files | |
s build e libs — pSp s _defs
Contains cFS PSP cmake

cmake- Libraries source :onfigu ration
generated | H - files B Jiles

files

7 7 7 7

!
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CFDP

Application Function

Transfers/receives file data to/from the ground

Checksum

Performs data integrity checking of memory, tables and files

Command Ingest Lab

Accepts CCSDS telecommand packets over a UDP/IP port

Data Storage

Records housekeeping, engineering and science data onboard for downlink

File Manager

Interfaces to the ground for managing files

Housekeeping

Collects and re-packages telemetry from other applications.

Health and Safety

Ensures critical tasks check-in, services watchdog, detects CPU hogging, calculates CPU

utilization

Limit Checker

Provides the capability to monitor values and take action when exceed threshold

Memory Dwell

Allows ground to telemeter the contents of memory locations. Useful for debugging

Memory Manager

Provides the ability to load and dump memory

Software Bus Network

Passes Software Bus messages over various “plug-in” network protocols

Scheduler

Schedules onboard activities via (e.g. HK requests)

Scheduler Lab

Simple activity scheduler with a one second resolution

Stored Command

Onboard Commands Sequencer (absolute and relative)

Stored Command Absolute

Allows concurrent processing of up to 5 (configurable) absolute time sequences

Telemetry Output Lab

Sends CCSDS telemetry packets over a UDP/IP port

Tning- Page 38
CFS Traming- Page
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