
Porting NASA core Flight System

to Magnetite on seL4

Juliana Furgala

September 2025

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. This material is based upon work supported under Air Force Contract No. FA8702-15-D-0001 or FA8702-25-D-B002. Any opinions,

findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the U.S. Air Force. © 2025 Massachusetts Institute of Technology. Delivered to the U.S.

Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-

7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work.

Porting Magnetite- 2

JF 09/2025

Satellite Systems are Valuable Targets

Weather

Satellite

Internet

Communication

GPS

LEO: Low Earth Orbit

Porting Magnetite- 3

JF 09/2025

Space-Cyber Threat Vectors

Attitude

Actuators

Attitude

Sensors

Onboard

Computer
Space Vehicle

Ground Segment

Payload

Bus

Comms Propulsion PowerComms Power

Data Bus (e.g., I2C, SpaceWire, 1553, etc.)

Propulsion

Ground segment

compromise

Software

vulnerabilities

Manipulate sensor

signals

Remote

vulnerability

exploitation

Break

encryption

Deceptive swarm

comms

Inside

crypto
boundary

A common, resilient foundation is needed at the
lowest levels of software to support the FSW above

Has existing protections

or is out of scope

FSW: Flight Software

SWaP: Size, Weight, and Power

Porting Magnetite- 4

JF 09/2025

SmallSat Guidelines Report

Flight software needs a secure foundation, but requires a systematic approach to develop

“Our goal is to provide a

familiar model at the ends of
the stack… while fostering an
improved security foundation

in the middle… to provide the
key underpinnings for the

Root of Recovery”

Purpose: Explore core
elements of satellite
design and operation
with software resilience
and recovery in mind

https://www.ll.mit.edu/sites/default/files/publication/doc/guidelines-secure-small-satellite-design-ingols-lsp-249.pdf

Porting Magnetite- 5

JF 09/2025

Challenges of Space System Survival

Not to scale

011

010

Inaccessible

Operational Location

Hostile Physical

Environment
(e.g., radiation)

SWaP

Limitations

High Stress

Launch/Install
Method

Intermittent

Comms Access

Specialized

User Training

Need to Operate

Unattended

LEO: Low Earth Orbit

SWaP: Size Weight and Power

High Level

of Hardware
DiversityCustom,

Complex
Software

Porting Magnetite- 6

JF 09/2025

• Formally verified microkernel

• Has scheduling, capabilities, and IPC

• Does NOT have system services, drivers,

sense of processes, etc.

 0101

101010

 1010

Functional

Correctness

Free From

Memory Bugs

Binary

Correctness

Controlled

Information
Flow

API

Data

Integrity

HACMS: High Assurance Cyber Military Systems

ARES: Agile and Resilient Embedded Systems

seL4

seL4 provides capabilities and performant IPC,

upon which we build a set of independent system services

Porting Magnetite- 7

JF 09/2025

Our Approach

Hardware

Formally verified microkernel

NASA core Flight System

Synchronization

Service
Timer Service

Ethernet Service Event Service

Logging Service

Network Service

Channel Service

Threads &

Processes

Xilinx Zynq702

Porting Magnetite- 8

JF 09/2025

Outline

• Motivation

• Mission Application: cFS

• Porting cFS to seL4

• Evaluation

• Lessons Learned

Porting Magnetite- 9

JF 09/2025

Purpose of Flight Software

Command

& Data

Handling

Power

Control

Guidance

Navigation

& Control

Radio

Frequency

Instrument/

Sensor

Handling

Flight software is the (ideally resilient) real-time “brain” that controls mission operations

Porting Magnetite- 10

JF 09/2025

NASA’s core Flight System (cFS)

• Widely used flight software framework

and application suite

• Canonical open-source choice for

academic research & government use​

• Designed as a reusable application

layer for space system command and

control​, providing navigation,

guidance, etc. in common modules

Porting Magnetite- 11

JF 09/2025

NASA cFS’ Heritage Story

2007

core Flight

Executive (cFE)
developed

2010

Initial cFS

applications
developed

2011

cFE

open-sourced

2014

cFS

open sourcing
planned

20051990s

“Clone and

own” software
development

GPM: Global Precipitation Measurement

LADEE: Lunar Atmosphere and Dust Environment Explorer

LCRD: Laser Communications Relay Demonstration

LRO: Lunar Reconnaissance Orbiter

MMS: Magnetospheric Multiscale

SDO: Solar Dynamic Observatory

MMS launch

GPM launch

LADEE launch

LCRD launch

2016

Porting Magnetite- 12

JF 09/2025

NASA cFS’ Heritage Story

• Brief history

• FSW as stove-piped, difficult to maintain,

with inconsistent modifications as “reuse”

• Dual mission pressure cooker in GSFC 582

• Team of experienced engineers to explore
commonality of features and flexible design

• What worked well and what didn’t

• Created the cFE, then cFS with initial open

sourcing in 2011

• Has reasonably achieved goal of reusability
while navigating difficulty of code fracturing

• Used on more than 40 projects, including NASA

Artemis, lunar Gateway, Mars Sample Return,

and Roman Space Telescope

Used on more than 40 projects, including

landers, orbiters, unnamed aerial vehicles,

space suits, crew habitats, rovers, satellites

lunar Gateway

Roman Space

Telescope

Artemis

NASA cFS’ Heritage Story

Porting Magnetite- 13

JF 09/2025

cFS Design and Structure

Portability layer,

accounts for varied
hardware, OSes

FSW: Flight Software

OS: Operating System

PSP: Platform Support Package

Porting Magnetite- 14

JF 09/2025

cFS Design Observations

• No usage of heap memory

– Common in real time applications to help with predictability

– Instead MANY global variables are used

• cFS is one address space with many threads

– Each app has at least one thread

– Extensive use of memory spaces that are shared between threads

• Apps are dynamic

– Expect to be able to start and stop components

– Can be stopped and started at runtime (by other components or the ground)

– Can be added and removed at runtime (using dynamic libraries)

• Availability is an overarching priority

– Mutexes are reentrant

– Many operations have timeouts

Porting Magnetite- 15

JF 09/2025

Outline

• Motivation

• Mission Application: cFS

• Porting cFS to seL4

• Evaluation

• Lessons Learned

Porting Magnetite- 16

JF 09/2025

Analysis of NASA’s cFS

• Applications rely on an OS Abstraction Layer, which then calls the underlying OS functionality

• This eases porting, as OS-specific functionality is implemented in only one place

• OS Abstraction Layer consists of about 100 API calls

• Functionality Expected:

1

S

debug_println()

Fault Recovery

P1

P2

!

API: Application Program Interface

cFS’s OS Abstraction Layer requires significant functionality from an underlying system

Porting Magnetite- 17

JF 09/2025

Dynamism Mismatch

• cFS is surprisingly dynamic

– Apps can be started and stopped

– Apps can be added and removed at runtime

• Resources required by the system change at runtime

– Threads, mutexes, semaphores, channels, timers, memory

• Much prior work on seL4 assumes static resource allocation

– CAmKES, Microkit, others

• Initial Solution: Dynamically instrument cFS to find a typical upper bound on resource usage

• Final Solution: Create a solution supporting dynamic creation of resources

Executive Services

Table Services

CFDP

File Manager

Payload Application v1 Payload Application v2

Time

Apps

Porting Magnetite- 18

JF 09/2025

CAmKES

Unverified seL4 C libraries

Minimal

Support

Minimal Support

for ZC702

OSAL API PSP API

Initial Proof of Concept

• Built on CAmKES and unverified

seL4 C libraries

• Hardcoded the apps that started,

preventing the runtime startup of apps

• Stubbed out OSAL APIs where possible

• Required features leaned on C libraries

• Particular difficulty with semaphores,

mutexes, setting estimated ceiling on

resources

Applications

Core Flight

Executive

Platform

Abstraction

App Library

cFE Apps

cFS

=

Developed
at LL

Difficulty of resource management and lack of

dynamism motivates the need for an actual OS

API: Application Program Interface

OSAL: Operating System Abstraction Layer

PSP: Platform Support Package

cFE

cFE API

Porting Magnetite- 19

JF 09/2025

Hardware

Formally verified microkernel

NASA core Flight System

Synchronization

Service
Timer Service

Ethernet Service Event Service

Logging Service

Network Service

Channel Service

Threads &

Processes

= Feature needed by OSAL

Designing an OS for cFS

Binary

Semaphores

Counting

Semaphores

Re-entrant

Mutexes

Clock Time

Timebase

(Timers*)

* One-shot and recurring

Console

Message

Queues

TasksTasks

Board Support

Package

OSAL: Operating System Abstraction Layer

Magnetite is the Operating System that resulted from this process

Porting Magnetite- 20

JF 09/2025

Secure Design Principles

* One-shot and recurring
OSAL: Operating System Abstraction Layer

Decentralization of

responsibility

Principle of least

privilege

Built upon formal

methods foundation

Security-first principles informed initial system service design and that of our resulting OS

Hardware

Formally verified microkernel

NASA core Flight System

Synchronization

Service
Timer Service

Ethernet Service Event Service

Logging Service

Network Service

Channel Service

Threads &

Processes

Porting Magnetite- 21

JF 09/2025

Services Developed

v1: timer, channel, event, sync

v2-3: shared memory, signal, UART

 logging, NVM, principles

v4: file system

v6: I2C

v7: cross-silo networking,

 ticker

v8: boot

Magnetite Development Timeline

cFS deployed

on dozens of
space missions

2018

SmallSat

Guidelines
Research

2019

2020

2021

2022

2023

2024

2025

v1 v2-v3 v4-v6 v7 v8

seL4 building,

capability and
IPC handling

= version release

ELF

loading, cFS
integration

Silos

introduced

Zynq702

DM3730

ODROID-H3 TX2 ZCU102

PolarFire VCK190 Kria K24

ARMv7

ARMv8

RISC-V
ARMv7

ARMv8x86-64

ARMv8 ARMv8

First NASA

cFS Demo

v9

ELF: Executable and Linkable Format

IPC: Inter-Process Communication

NVM: Non-Volatile Memory

Porting Magnetite- 22

JF 09/2025

CDF: Cumulative Distribution Functions

IPC: Inter-Process Communication

Performance Microbenchmarks

Microbenchmarks show resource primitives to be performant, with improvement over time

Overhead Measurements (Cycles)

* No direct Linux equivalent

Real-Time Patched Linux Magnetite (2021) Magnetite (2022)

Average Std Dev 95 %tile Max Average Std Dev 95 %tile Max Average Std Dev 95 %tile Max

Context Switch: Thread

Context Switch: Process
Round Trip IPC

1,060

4,816

*

25

327

*

1,077

4,858

*

3,232

17,919

*

542

542

989

12

12

19

563

564

1,027

597

703

1,113

504

498

1,136

0

1

3

504

498

1,137

550

599

1,241

Event Latency: equal prio

Event Latency: L2H prio
Event Latency: H2L prio

*

*

*

*

*

*

*

*

*

*

*

*

11,504

11,407

16,585

175

176

222

11,801

11,702

16,953

12,247

12,233

18,160

8,788

8,790

14,138

185

181

292

9,095

9,093

14,613

10,393

9,870

17,614

Mutex Uncontended

Mutex Contended
217

15,844

2

619

217

16,263

328

30,570

9,959

13,053

184

234

10,270

13,440

11,165

13,918

6,301

15,574

292

285

6,745

16,042

8,615

17,394

Semaphore Uncontended

Semaphore Contended
116

6,713

90

404

116

6,994

9,112

22,136

9,051

11,430

179

217

9,357

11,791

9,792

12,384

5,360

11,661

200

250

5,689

12,070

6,348

12,741

Timer Latency

Timer Latency w/ timerfd
20,665

6,493

1,068

632

21,171

6,842

33,118

14,806
16,042 203 16,381 17,317 12,202 210 12,536 13,907

Channel Latency: L2H prio

Channel Latency: H2L prio
9,439

11,507

423

841

9,627

11,711

22,671

71,169

23,749

24,839

230

229

24,138

25,222

25,678

27,806

18,367

18,505

286

273

18,850

18,983

20,038

20,271

Porting Magnetite- 23

JF 09/2025

Outline

• Motivation

• Mission Application: cFS

• Porting cFS to an OS on seL4

• Evaluation

• Lessons Learned

Porting Magnetite- 24

JF 09/2025

Lessons Learned: Space Software is Dynamic

• Space Flight Software has significant dynamism

– Apps can be started or stopped, added or removed from the system

– Functionality can be enabled or disabled at runtime

– Partial updates are common

• This leads to changes in system configuration and resource usage at runtime

• Static system configurations are inadequate

– Would require many system images which is complex to create

– Low bitrates mean sending those images is expensive

– Updates are considered risky in space

Space software requires an operating system that can create

new dynamic system configurations and resources

Porting Magnetite- 25

JF 09/2025

Lessons Learned: Minimizing Temporal Trust

• Privileged system processes manage user

process memory and capabilities

• User processes are captive in trust to the OS

• Privilege is centralized and compromise

spreads

Process 1

Process 2

Process List Process 1

Process 2

Memory Pages

Capabilities

Memory Pages

Capabilities

Memory

Management

• Self-owned memory and capabilities

• System services, like memory management,

only borrow needed capabilities

• Intentional decentralization of privilege

• System services are only trusted at use time

Process 1

Process 2

Process List
Process 1

Process 2

Memory Pages

Capabilities

Memory Pages

Capabilities

Memory

Management

Linux Processes Self-Contained Processes

Porting Magnetite- 26

JF 09/2025

Lessons Learned: Minimizing Temporal Trust

• Hold process capabilities “in escrow”

• User process → system service requests that

use cspace capabilities pass through an escrow

process

• Minimal trust needed between user processes

and services (and vice versa)

Process 1

Process 2

Process List Process 1

Process 2

Memory Pages

Capabilities

Memory Pages

Capabilities

Memory

Management

• Issue: Processes can rearrange their cspace to

prevent memory reclamation

• Deleting a cspace does not delete ones within

it, making them unreachable

• Reidentifying a capability is a storage side

channel

Self-Contained Processes
Escrow Processes

Process 1

Process 2

Escrow Process

Escrow Process

Process List

Process 1

Process 2

Memory Pages

Capabilities

Memory Pages

Capabilities

Memory

Management

X

X

Porting Magnetite- 27

JF 09/2025

From an Operating System to a Distributed System

Note: Arrows read as “depends upon.” This uses the older

Magnetite v3.0 to provide notional examples of dependencies

Channel

service

Synchronization

service

Event service

Timer service UART Logging

service

Network

service

Principle

service

Escrow service

Ethernet

service

NVM service

Shared Mem

Channel service

Signal service

Cross-Silo

Logging service

Difficult to define

dependencies Difficult to order

events and timing

Difficult to resolve

state inconsistenciesDifficult to serialize data

Potential for

deadlock

A microkernel approach with many services brings with it all the classic problems from

distributed systems

Porting Magnetite- 28

JF 09/2025

Conclusion

• Flight software is critical in bringing satellites to life and ensuring they stay in an

operational state during their missions

• Decades of space excursions have relied upon very stovepiped, tightly coupled

software-hardware solutions

• However, with space being an increasingly accessible operating environment and

therefore a tantalizing target, flight software needs to run on a secure foundation

• cFS, a more modularly designed modern FSW solution, was selected and we studied

the minimum resources it needed to operate

• Through the process of porting cFS to seL4 (really Magnetite OS), we learned lessons

about the surprising dynamism of space FSW, how to minimize trust, and the

difficulties of distributed systems as applied to OSes

Porting Magnetite- 29

JF 09/2025

Contact Information

Juliana Furgala
Juliana.Furgala@ll.mit.edu

Porting Magnetite- 30

JF 09/2025

cFS Mission Directory Structure

cFS Distribution

libs psp

toolsapps
Each app is
in a separate

subdirectory

build
Contains
cmake-

generated

files

cfe
cFE
source

files

osal
OSAL
source

files

_defs

cmake

configuration

files

cFS
Libraries

PSP
source

files

Ground
and build

tools

Porting Magnetite- 31

JF 09/2025

	Default Section
	Slide 1: Porting NASA core Flight System to Magnetite on seL4
	Slide 2: Satellite Systems are Valuable Targets
	Slide 3: Space-Cyber Threat Vectors
	Slide 4: SmallSat Guidelines Report
	Slide 5: Challenges of Space System Survival
	Slide 6: seL4
	Slide 7: Our Approach
	Slide 8: Outline
	Slide 9: Purpose of Flight Software
	Slide 10: NASA’s core Flight System (cFS)
	Slide 11: NASA cFS’ Heritage Story
	Slide 12: NASA cFS’ Heritage Story
	Slide 13: cFS Design and Structure
	Slide 14: cFS Design Observations
	Slide 15: Outline
	Slide 16: Analysis of NASA’s cFS
	Slide 17: Dynamism Mismatch
	Slide 18: Initial Proof of Concept
	Slide 19: Designing an OS for cFS
	Slide 20: Secure Design Principles
	Slide 21: Magnetite Development Timeline
	Slide 22: Performance Microbenchmarks
	Slide 23: Outline
	Slide 24: Lessons Learned: Space Software is Dynamic
	Slide 25: Lessons Learned: Minimizing Temporal Trust
	Slide 26: Lessons Learned: Minimizing Temporal Trust
	Slide 27: From an Operating System to a Distributed System
	Slide 28: Conclusion
	Slide 29: Contact Information

	References
	Slide 30: cFS Mission Directory Structure
	Slide 31

