
Model-based Development
for seL4 Microkit/Rust

with Integrated Formal Methods using HAMR

John Hatcliff
Robby
Jason Belt

seL4 Summit – Sept 3, 2025

Stefan Hallerstede

Kansas State University

Aarhus University

HAMR - SysMLv2/AADL to Rust + seL4

With collaborators at …
Collins Aerospace
Dornerworks
UNSW
Proofcraft

Carnegie Mellow Univ.
Univ. of Kansas

HAMR
HAMR – tool chain for [H]igh [A]ssurance [M]odeling and [R]apid engineering for embedded systems

Modeling, analysis, and
verification in the SysMLv2
and AADL modeling languages

Model-level behavior specifications
(e.g., contracts) and analyses

Component development,
automated testing, and
verification in multiple languages

• C
• Rust with Verus verification
• Slang (developed at Kansas State)

• safety-critical subset of Scala
• contract-based verification
• transpiles to C and Rust

Deployments aligned with
AADL run-time on multiple
platforms

se
L4

 D
ep

lo
ym

en
t

Li
nu

x
De

pl
oy

m
en

t

JV
M

 D
ep

lo
ym

en
t

verified micro-kernel

CAmkES & microKit
HAMR - SysMLv2/AADL to Rust + seL4

Industrial workflows

Requirements Engineering

Domain Concepts

Planning Diagrams

Potential Benefits to seL4 Application Developers

HAMR - SysMLv2/AADL to Rust + seL4

A systems engineering environment based on standardized modeling languages (SysMLv2, AADL) with
accompanying analysis, verification, and assurance case tools

Existing seL4 ecosystem tools for
component-oriented specification of
seL4 capabilities,
partitioning, and
inter-partition communication

Microkit / CAmKES Specification

se
L4

 D
ep

lo
ym

en
t

Sy
st

em
s

En
gi

ne
er

in
g

Software/Hardware/Middleware modeling
Architecture constraints / patterns
Component contracts + verification
Assurance case construction
..
Information Flow Spec & Analysis
Timing / Scheduleability

SysMLv2 / AADL IDE – VSCode / Cameo ..integrate seL4 configuration with…

Microkit system description (XML)

Industry workflows

Planning Diagrams

Requirements Engineering

Domain Concepts

Potential Benefits to seL4 Application Developers

HAMR - SysMLv2/AADL to Rust + seL4

A systems engineering environment based on standardized modeling languages (SysMLv2, AADL) with
accompanying analysis, verification, and assurance case tools

Microkit / CAmKES Specification

se
L4

 D
ep

lo
ym

en
t

Sy
st

em
s

En
gi

ne
er

in
g

Software/Hardware/Middleware modeling
Architecture constraints / patterns
Component contracts + verification
Assurance case construction
..
Information Flow Analysis
Timing / Scheduleability

SysMLv2 / AADL IDE – VSCode / Cameo INSPECTA Capabilities

Microkit system description (XML)

Goals:
* Make seL4 more accessible
* Framework for engineering
verified applications on
top of seL4 verified
infrastructure

HA
M

R
Au

to
-g

en
er

at
io

n
Microkit system description
Microkit code bindings (entry point skeletons)
VM configurations (partial)
Build scripts
Skeleton system,
 e.g., immediately runnable on Qemu (agile)

Protection domain automated unit testing infrastructure
Code-level contract information (e.g., Rust/Verus)

Traceability information
Assurance case structures (partial)

Auto-generated

Context and Target Applications

HAMR - SysMLv2/AADL to Rust + seL4

Launched Effects Mission Computer

On the DARPA PROVERS program, HAMR is being used to develop an experimental version of the mission computer
for the Collins “Launched Effects” platform (final development will emphasize HAMR SysMLv2 to Rust)

https://youtu.be/SwPJHmZQMaM?si=NwTdb3VFpV-MxSreVideo:

DARPA PROVERS
= “integrating pipelines of formal methods in
defense industry development processes”

Launched Effects product line
= tube-launched, expendable UAVs

..increase security
and modularity

..decrease costs for
development and
assurance

https://youtu.be/SwPJHmZQMaM?si=NwTdb3VFpV-MxSre
https://youtu.be/SwPJHmZQMaM?si=NwTdb3VFpV-MxSre
https://youtu.be/SwPJHmZQMaM?si=NwTdb3VFpV-MxSre

Characteristics of Supported Systems

HAMR - SysMLv2/AADL to Rust + seL4

Use HAMR SysMLv2/AADL modeling to specify partitioning, communication architecture of improved system

Existing Launched Effects
Mission Control Software
(sandboxed in virtual machine in an seL4 partition)

Message filters,
scrubbers, etc.

Verified monitor components
ensure that system behaviors are
within appropriate boundaries…

Verified Rust components for cyber-
resiliency (non-hackable, non-bypassable
due to seL4 partitioning)

Characteristics of Supported Systems

HAMR - SysMLv2/AADL to Rust + seL4

Existing Launched Effects
Mission Control Software
(sandboxed in virtual machine in an seL4 partition)

Message filters,
scrubbers, etc.

Verified monitor components
ensure that system behaviors are
within appropriate boundaries…

Verified Rust components for cyber-
resiliency (non-hackable, non-bypassable
due to seL4 partitioning)

HAMR Code Generation for seL4
guarantees that deployed system
has the partitioning and
information flow properties
reflected in the model

seL4 microkernel guarantees partitioning of components
and communication (backed by computer-checked proofs)

Fault
containmentX

No exfiltration X
Legacy code
hosted in VM
(low trust)

Cyber-resiliency
(high criticality)

No infiltration

X

No eavesdropping;
no interference

seL4
configuration

Use HAMR SysMLv2/AADL modeling to specify partitioning, communication architecture of improved system

Verified Component Code

HAMR - SysMLv2/AADL to Rust + seL4

seL4 microkernel guarantees partitioning of components
and communication (backed by computer-checked proofs)

Fault
containmentX

No exfiltration X
Legacy code
hosted in VM
(low trust)

Cyber-resiliency
(high criticality)

No infiltration

X

No eavesdropping;
no interference

seL4
configuration

Rust (with Verus verification)

INSPECTA FocusPROVERS program
emphasis on memory
safe languages…

Other Summit INSPECTA-Related Talks

HAMR - SysMLv2/AADL to Rust + seL4

Darren Cofer (Principal Investigator) –
Application to Collins Launched Effects

“Integration of seL4 in a Flight
Vehicle Mission System”

“Rust-based drivers and verified rust
applications on seL4”

Robert VanVossen –
Rust contract-based development, testing,
and verification of firewall components

Gerwin Klein –
Automating seL4 kernel correctness proofs
for new platforms

“The next 700 verified seL4
platforms”

“Trustworthy Systems R&D Update”

Gernot Heiser –
Verified infrastructure and services

“Verifying Device Drivers with Pancake”

Junming Zhao–
Verified infrastructure and services

Robert Vanvossen Talk
Dornerworks

HAMR - SysMLv2/AADL to Rust + seL4

Architecture
Specifications
(AADL & SysMLv2)

+ Behavior
Contracts
(formalized
Firewall Rules)

Firewall
Requirements
(natural language)

Verus Verification that Firewall
implementation conforms to
Requirements

Ardupilot -- VM Hosting

seL4 microkit
system description file
(partitioning specification) AADL-compliant threading and

communication implemented
using microkit primities

HAMR
Generation

Automated property-based
testing that Firewall
implementation conforms to
Requirements

Rust application
code skeletons

Verus Contracts

Property—based
testing infrastructure

INSPECTA Assurance Dashboard
+ Assurance Case

Automated..
• metrics generation
• traceability info
• attestation (w/ KU)
• assurance case evidence

Recent demo!

INSPECTA – Public Demonstrator Example

“Rust-based drivers and verified rust
applications on seL4” -- Thursday

…Dornerworks found a 10x reduction in development time.

INSPECTA “PROVERS Pipeline” Scope

n Interactions across the pipelines
stages are organized a core set
of computational and data
abstractions that are amenable
to formal verification

n Semantics of these abstractions
must be maintained and
traceable across the stages

n Claims, contributions of stages,
and assurance evidence must be
accumulated across the stages

HAMR - SysMLv2/AADL to Rust + seL4

A primary goal of PROVERS is to demonstrate “pipelines” of formal methods capabilities. Designing and
managing the INSPECTA “pipeline” entails a lot of extra work…

seL4

Verified services

Rust coding,
testing,
& verification

System models,
analysis, verification

IN
SP

EC
TA

 T
ec

hn
ol

og
ie

s

INSPECTA HAMR
Model-based
Development
Pipeline

To fully demonstrate pipeline concepts within
program timeline, the scope of the pipeline needs to
be narrower than that of the individual technologies

Accumulated
Assurance

HAMR Formal Semantics for INSPECTA Pipeline

Joint work with
Stefan Hallerstede
(U. Aarhus)

Isabelle
Latex/PDF generated from Isabelle

150+ page literate-style Isabelle/HOL theories for AADL/SysMLv2 HAMR execution
model (guides our design of our contracts and verification/testing framework)

Note limited scope: HAMR subset of AADL/SysMLv2; run-time semantics; connection to code generator by manual inspection

• Enhanced and scope expanded
• Prove soundness of contract framework
• Extend formalization downwards towards

seL4 proof-base

PROVERS

SysMLv2/AADL for HAMR with seL4 Microkit

AADL Modeling Concepts

HAMR - SysMLv2/AADL to Rust + seL4

Thread
(periodic) Thread

(sporadic)
Thread
(sporadic)

Process
Event port
--notification

Data port --
Shared data
communication

Each AADL modeling element is classified according to its role in embedded system architecture…

AADL software modeling
emphasizes components,
component ports (make up an
interface), and communication
connections between ports

“Protected
address space”..

“Unit of
scheduleability”..

AADL Data Model – Type language
for value-based data structures
flowing between components

Event Data port --
Messages with payloads

AADL Modeling Concepts

Code skeleton for
selected thread pattern

Implied API
Pattern for
application code
to access port
communication,
etc.

Developer
configures
computational
structure

Implementation of selected
communication pattern

Event
Data

Event Data
…

AADL Port & Connection
Property Options

buffered notifications
shared data cells
 (or data distribution service)
buffered messages
 (message passing middleware)

+ QoS, buffer sizes, latencies, etc

Periodic
Sporadic
Hybrid
…

AADL Thread
Property Options

+ timing, scheduling
constraints, etc.

SysMLv2/AADL for HAMR with seL4 Microkit

AADL to SysMLv2

HAMR - SysMLv2/AADL to Rust + seL4

n Like AADL, has both a graphical view and textual view
n Many AADL modeling elements have analogues in SysMLv2

n E.g., components, ports, connections, developer-defined attributes
n Aims to provide a stronger “semantics” for system engineering compared to UML, SysMLv1
n Re-engineered from the ground up

n No backwards compatibility with SysMLv1 except through translation
n Not built as a profile of UML

n Will have wide-ranging commercial tool support as well as open source implementations

Why might SysMLv2 provide a
alternate vehicle for rigorous
model-based development,
including AADL concepts?

Standardization Effort – Migrating AADL to SysMLv2

n Working with OMG RTESC
working group to
prototype AADL concepts
in SysMLv2

n We are one of the most
active participants working
on building end-to-end
tools for formal methods
and code generation

n ”Trail blazers” on
integrating formal contract
languages in SysMLv2 IDE

SysMLv2/AADL for HAMR with seL4 Microkit

RTESC Workgroup – entity responsible for integrating AADL concepts into SysMLv2

VSCode SysMLv2 HAMR Front End
We developed a VSCode SysMLv2 HAMR front-end based on the SysIDE VSCode plug-in

SysMLv2/AADL for HAMR with seL4 Microkit

SysMLv2
component
interfaces AADL Library Properties as

SysMLv2 attributes

Formal behavior
specifications in
GUMBO contract
language

SysMLv2 encodings of
datatypes specified
using AADL Data
Modeling Language

Verification results for
model-level contracts

Code-level
artifacts in
same IDE:
Integration of
MicroKit-based
Slang, Rust and
C development
for seL4

Artifacts & Workflow -- Detailed Technical Report

HAMR - SysMLv2/AADL to Rust + seL4

• 9 Real-time Tasks
• ~40 component-level requirements
• Interestesting modal behavior

Isolette – Infant Incubator

50+ page report w/

Git repo and videos

End-to-end Artifacts
• ConOps
• Use Cases
• Requirements
• Models
• Contracts

• Testing
• Verification
• Assurance Case

REMH – Informal Designs

HAMR - SysMLv2/AADL to Rust + seL4

The FAA REMH decomposes the Isolette into a control system and safety monitor subsystem
with three tasks each

Thermostat decomposed into Regulate
Temperature and Monitor Temperature
functions.

Control/Regulate

Safety Monitor

Using AADL to Represent Design

HAMR - SysMLv2/AADL to Rust + seL4

AADL Model is a straightforward rendering of the design diagrams in the FAA REMH

This example (software aspects) is worked completely end-to-end
from requirements, to contracts, to automatically tested and verified
application code, to deployment on seL4, Linux, JVM, JavaScript.
All artifacts are publicly available.

Manage Heat Source
Thread (Task)

Formal AADL Model

Informal REMH
Design Artifacts

Manage Heat Source Thread

HAMR - SysMLv2/AADL to Rust + seL4

AADL Interface for Manage Heat Source Thread

Desired Temperature Range
(low & high set points)

Subsystem Mode

Current Temperature

Desired On/Off
state for heater

SysMLv2 + AADL Modeling Concepts

SysMLv2/AADL for HAMR with seL4 Microkit

part def Manage_Heat_Source_i {

 in port current_tempWstatus :
 in port lower_desired_temp :
 in port upper_desired_temp :
 in port regulator_mode :

 out port heat_control :

}

SysMLv2

Developer uses
domain library to
annotate base
SysMLv2 elements
with AADL concepts

RTESC workgroup represents AADL
concepts as SysMLv2 types, attributes, etc.

AADL Domain
Library for SysMLv2

:> Thread

Mark as AADL thread

DataPort { in :> type : Isolette_Data_Model::TempWstatus_i; }
DataPort { in :> type : Isolette_Data_Model::Temp_i; }
DataPort { in :> type : Isolette_Data_Model::Temp_i; }

DataPort { in :> type : Isolette_Data_Model::Regulator_Mode; }

DataPort { out :> type : Isolette_Data_Model::On_Off; }

Mark ports with
AADL port categories and
data types

attribute :>> Dispatch_Protocol = Supported_Dispatch_Protocols::Periodic;
attribute :>> Period = 1000 [millisecond];
attribute Domain: CASE_Scheduling::Domain = 9;

Set AADL pre-defined
property values for this thread

AADL / SysMLv2 Component Types Side-by-Side

SysMLv2/AADL for HAMR with seL4 Microkit

AADL

SysMLv2
Appearance is similar

Challenges

HAMR - SysMLv2/AADL to Rust + seL4

n SysMLv2 has no “annex mechanism”; need to figure out how to
represent AADL Annexes
n behavior contracts, architectural constraints language, hazard analysis

n Representation of AADL Properties
n model configuration parameters

n Formal semantics of run-time behavior
n Development of SysMLv2 “semantics” and ”formal methods” is spread

across several OMG working groups and is struggling to focus
n SysMLv2 is big and general, so it is hard for committees to develop a

precise semantics that satisfies their committee mandate

Challenges in migrating AADL Formal Methods to SysMLv2

Natural Language Requirements for Thread

HAMR - SysMLv2/AADL to Rust + seL4

FAA REMH requirements for Manage Heat Source task

Requirements for control laws of this task...

Component Requirements to Contracts

HAMR - SysMLv2/AADL to Rust + seL4

GUMBO contracts are written together with the thread interface in the VSCode SysIDE plug-in using a
customized editor extension that we developed to support contracts

Component
interface

Developer
formalizes
requirements

Component
contractContracts incorporated

via SysMLv2 language
construct
(essentially, a comment
that HAMR parses,
highlights syntax, etc.)

Heat Controller Task
natural language
functional requirements
(control laws)

Component Requirements to Contracts

HAMR - SysMLv2/AADL to Rust + seL4

Example: One contract from heater control laws in Manage Heat Source Thread (a periodic
component), with traceability to natural language requirements.

Mode condition
(..if the mode is Normal)

Compare current temperature to desired
range
(..if temperature is below the target range)

Set the desired state
of the heater
(…turn heater On, to
warm up the Isolette)

...

...

OSATE AADL Editor

HAMR Code Generation

Platform configuration information
(e.g., seL4 partitioning and
protection information)

System
Build

Auto-generated
Component Infrastructure
Code for Platform

Auto-generated
Component Infrastructure
Code for Platform

Auto-generated
Component Infrastructure
Code for Platform

Code gen for
Component &
Threading
Infrastructure

Code gen for
Application APIs

Application
Code

Application
Code

Application
Code

Application Code
Development

Auto-Generated
Run-Time
Communication
Infrastructure
Code for Platform

Auto-Generated
Run-Time
Communication
Infrastructure
Code for Platform

Code gen for
Communication
Infrastructure

HAMR - SysMLv2/AADL to Rust + seL4

HAMR Code Generation
For seL4, the process is instantiated like this…

Partition specified as a
Microkit Protection Domain

Application code in C or Rust --
Platform-independent because it only talks to AADL RT APIs

Configure system
partitioning using seL4
Microkit System
Description

AADL
Port & Thread
Infrastructure
Code

M
icrokit Channels

M
icrokit Channels

Communication specified
using Microkit Channels

AADL Adapters

AADL Adapters

AADL Adapters

AADL Adapters

+ seL4 static schedule
(via Microkit branch with
seL4 domain scheduler)

..working with
UNSW and
DornerWorks

SysMLv2/AADL for HAMR with seL4 Microkit

AADL Port and Thread
Execution Semantics

HAMR - SysMLv2/AADL to Rust + seL4

Application Code

AADL Component Application Memory Boundary

Input
Application
Port State

Output
Application
Port State

Co
m

m
un

ica
tio

n
In

fra
st

ru
ct

ur
e

- I
np

ut
s

Co
m

m
un

ica
tio

n
In

fra
st

ru
ct

ur
e

- O
ut

pu
ts

(2) Compute,
Run to
Completion

(3) Send
outputs

From AADL standard…

On each dispatch, AADL threads follow a well-known input-compute-output pattern for real-time tasks that simplifies
analysis and verification…

gets puts

(1) Receive
inputs

“Analyzeable Real-
Time Systems”
Burns & Wellings

AADL Port and Thread
Execution Semantics

HAMR - SysMLv2/AADL to Rust + seL4

Application Code
Input
Application
Port State

Output
Application
Port State

Co
m

m
un

ica
tio

n
In

fra
st

ru
ct

ur
e

- I
np

ut
s

Co
m

m
un

ica
tio

n
In

fra
st

ru
ct

ur
e

- O
ut

pu
ts

(2) Compute,
Run to
Completion

(3) Send
outputs

From AADL standard…

gets puts

(1) Receive
inputs

“Analyzeable Real-
Time Systems”
Burns & Wellings

AADL tasking and port semantics ensures no interference with other threads or communication layer

There is no external interference
with the application port state while
application code executes.

AADL Port and Thread
Execution Semantics

HAMR - SysMLv2/AADL to Rust + seL4

Application Code
Input
Application
Port State

Output
Application
Port State

Co
m

m
un

ica
tio

n
In

fra
st

ru
ct

ur
e

- I
np

ut
s

Co
m

m
un

ica
tio

n
In

fra
st

ru
ct

ur
e

- O
ut

pu
ts

(2) Compute,
Run to
Completion

(3) Send
outputs

From AADL standard…

gets puts

(1) Receive
inputs

“Analyzeable Real-
Time Systems”
Burns & Wellings

Abstractly, a function from input ports states (and local
data) to output port states (and updated local data)

AADL Port and Thread
Execution Semantics

HAMR - SysMLv2/AADL to Rust + seL4

Application Code
Input
Application
Port State

Output
Application
Port State

Co
m

m
un

ica
tio

n
In

fra
st

ru
ct

ur
e

- I
np

ut
s

Co
m

m
un

ica
tio

n
In

fra
st

ru
ct

ur
e

- O
ut

pu
ts

(2) Compute,
Run to
Completion

(3) Send
outputs

From AADL standard…

gets puts

(1) Receive
inputs

“Analyzeable Real-
Time Systems”
Burns & Wellings

Ain Aout

Contract for application
code methods

Local State
Variables V

Outline of Protection Domain Structure

HAMR - SysMLv2/AADL to Rust + seL4

For each SysMLv2/AADL periodic Thread component, HAMR generates the following Microkit PD code…

C code implementing
AADL standardized
port manipulation
and entry points in
terms of Microkit
channel accesses and
Microkit entry points

Rust to C
bindings
(Rust unsafe)

get_in_1(..)

get_in_n(..)

put_out_1(..)

put_out_m(..)

// app compute entry point
pub fn timeTriggered (..)

{
 …
}

// app init entry point
pub fn init (..)

{
 …
}

..auto-generated verus
 contract..

..auto-generated verus
 contract..

Verus component
verification boundary

Rust application
code skeletons
(Rust safe)

Executable contracts Property-based
testing infrastructure Auto-generated

testing infrastructure

Ghost in_1

Ghost in_n

Ghost out_1

Ghost out_n

Ghost variables used
to abstract port state
(auto-generated)

Application code goes
here in AADL-compliant
entry points

Auto-generated Skeleton, Contracts, Testing

HAMR - SysMLv2/AADL to Rust + seL4

AADL Model
Implied Semantics

Rust code skeleton
+ Verus Contracts
+ Automated Testing
Infrastructure

auto-
generated

Periodic Thread
w/ data ports ……Interfaces/APIs/Skeletons + contracts + testing

infrastructure are auto-generated from SysMLv2/AADL model.

Auto-generated Skeleton, Contracts, Testing

HAMR - SysMLv2/AADL to Rust + seL4

AADL Model
Implied Semantics

auto-
generated

Periodic Thread
w/ data ports ……Interfaces/APIs/Skeletons + contracts + testing

infrastructure are auto-generated from SysMLv2/AADL model.

Skeleton for application
code entry point

Component contract (small excerpt)

Verus error indicates that
contract is not yet satisfied

Rust VSCode
editor

Application Code
in Rust

Verus Contract Auto-Generated From Model Contract

HAMR - SysMLv2/AADL to Rust + seL4

Verification of Rust application code against contracts using Verus (excerpts)

Pre

Post

Periodic Thread
w/ data ports

auto-
generated

Coding and Background Verification

HAMR - SysMLv2/AADL to Rust + seL4

AADL Model
Implied Semantics

auto-
generated

Periodic Thread
w/ data ports …Developer adds application code to contract-

annotated skeleton, and verification/testing
tools check conformance to contracts.

Adding application
code to skeleton

Application Code
in Rust

Coding and Background Verification

HAMR - SysMLv2/AADL to Rust + seL4

AADL Model
Implied Semantics

auto-
generated

Periodic Thread
w/ data ports

Get Reading a value from the
regulator_mode input data
port using auto-generated API

Putting a value from the
heat_control output data
port using auto-generated API

Put

…Developer uses auto-generate APIs to get
and put data on component ports

Verus indicates that
contract is satisfied

Application Code
in Rust

Demo

HAMR - SysMLv2/AADL to Rust + seL4

Verification of application code against contracts using Verus verification tool…

Automated Testing to Contracts

HAMR - SysMLv2/AADL to Rust + seL4

For every thread component, HAMR auto-generates property-based testing infrastructure for
inserting values into component input ports and for checking values of output ports.

HAMR-generated AADL
Thread Infratructure

Repeatedly dispatch
with random values and
check post-condition

Thread
Application
Code

Executable
Contracts
(Rust Boolean
functions)

X1, X2, ..., Xn

Integrated
Pre-condition
Checker
bool Function

Integrated
Post-condition
Checker
bool Function

Models & contracts

Gen(T1)

Gen(T2)

Gen(T3)

Default random value
generators for each input port
using propTest framework
(based on port type and data
invariants)

Customize as
necessary

Automated:
Start with a
push-button experience
for the user

Auto-generated coverage reports

HAMR-generated Executable Contracts

HAMR - SysMLv2/AADL to Rust + seL4

AADL GUMBO Contract (clause REQ_MHS_2)

auto-generated

Application
Code Code

Model

Rust Executable Contract (clause REQ_MHS_2)

Traceability info automatically embedded

auto-generated

Library of
Executable
Contracts

Each clause in model-level GUMBO contracts is translated to a code-level Boolean function in Rust
that works on the appropriate port/thread state elements

ADEPT 2025 - Hatcliff

HAMR-generated Executable Contracts

HAMR - SysMLv2/AADL to Rust + seL4

auto-generated

Application
Code Code

Model

auto-generated

Library of
Executable
Contracts

Rust Executable Contract
(aggregated clauses for
post-condition)

Code: Auto-generated in
Testing Library

Model: AADL GUMBO Contract
(all five clauses)

Code generation weaves together
functions for contract clauses to
form a pre-condition checker
and a post-condition checker
(also includes data invariants, etc.).

Complete set of Model-level GUMBO contract clauses are translated to a hierarchy of executable
Boolean functions in Rust (code-level) to form executable pre/post conditions and test oracles.

ADEPT 2025 - Hatcliff

HAMR-generated Randomizing Test Runner

HAMR - SysMLv2/AADL to Rust + seL4

HAMR automatically generates test runner infrastructure with default random value generators for each input
port. The executable contract is automatically used behind the scenes as a test oracle.

auto-generated propTest
random value generators for each input port

auto-generated configurations for propTest
framework

Press this button and you automatically get 1000’s of random
tests against the component contract

HAMR-generated Randomizing Test Runner

HAMR - SysMLv2/AADL to Rust + seL4

Default random generators are often easy to customize to increase coverage, reduce #’s of discarded tests,
obtain tests for specific features, etc.

Developer-customized generators

Customizing a numeric
generator to a particular range

Benefits – Integrated Testing / Verification
n Immediately launch 1000’s of default

tests, check conformance to contracts
n Debug contracts; gradually move to Verus

n When Verus verification fails, generate
concrete failing tests that can be given to
developers to run through debugger

n When Verus/SMT cannot handle certain
language features; use testing for lower-
confidence assurance
n Maybe be a step taken before handing off

certain VCs from Verus to Lean
n Testing and verification derived from the

exact same GUMBO contracts
HAMR - SysMLv2/AADL to Rust + seL4

HAMR automated component testing
(via Rust propTest)

HAMR automated verification
(via Verus)

HAMR Observations/Traceability Framework

Platform configuration
information

System
Build

Auto-generated
Component Infrastructure
Code for Platform

Auto-generated
Component Infrastructure
Code for Platform

Auto-generated
Component Infrastructure
Code for Platform

Application
Code

Application
Code

Application
Code

Auto-Generated
Run-Time
Communication
Infrastructure
Code for Platform

Auto-Generated
Run-Time
Communication
Infrastructure
Code for Platform

HAMR - SysMLv2/AADL to Rust + seL4

Soundness of correspondence
between Testing and Verification:

Need to ensure that contract
semantics and testing are “observing”
the exact same features across all the
abstraction layers.

Model features referenced
in model contracts

Code features referenced in
code contracts

Executable features
referenced in testing (seL4
memory regions)

Correspondence across
different levels of abstract
must be documented for
each observable feature

Traceability Report

Correspondence is
not altered outside of HAMR
(e.g., by an attacker or
naughty engineer)

Enforced via KU Attestation
Framework

Auto-generated System Feature Traceability for
Manage Heat Source Port (GitHub Markdown)

HAMR - SysMLv2/AADL to Rust + seL4

HAMR auto-generates traceability reports, e.g., for a port – relationships between model, code, kernel artifacts

(Model) SysMLv2 port declaration

(Code) HAMR-generated Rust API/implementation

(seL4 Microkernel) Declaration/protection of shared memory for port

Assurance and Traceability Reports

HAMR - SysMLv2/AADL to Rust + seL4

Architecture

Static Metrics

Component Code
Application

Executable Contracts

Configurations
Config Name1

Config Name2…

Component Model Info
Interfaces

GUMBO Contracts

Component Interface

GUMBO Contracts

Component Code
Component Executable Contracts

Configuration N2
Property Specification

Property Satisfaction
& Coverage

Configurations

Total Tests
 Passing
 Failed
 Unsat

Configuration N2 results per timeout

Configuration Tests
 Passing
 Failed
 Unsat

Configuration N2 results per timeout

Test Vectors

Coverage Reports

HAMR auto-generates a variety of assurance and traceability reports
INSPECTA Assurance Dashboard
+ Assurance Case

ongoing
integration…

Auto-generated Contract Traceability for
Manage Heat Source Requirement (GitHub Markdown)

HAMR - SysMLv2/AADL to Rust + seL4

(Model) GUMBO contract clause for the requirement

Req ID

(Code - Verification)
Rust/Verus contract clause for the requirement

(Code Test)
Executable contract clause in testing
oracle for the requirement.

Contract Clause traceability

Conclusions -- Themes
n Raising the abstraction level

n ”patterns for Microkit protection domains” for application components
n choosing patterns to be amenable to component/system assurance
n representing patterns/abstractions in standardized modeling languages
n separating developer view of the pattern (higher-level) from seL4/microkit

realization (lower-level)
n Auto-generation support for development tasks

n build scripts, VM configuration, testing, logging
n Leveraging specifications for both verification and testing
n Integrating activities from broader industry ecosystems, especially

those related to assurance activities
HAMR - SysMLv2/AADL to Rust + seL4

Plans - Next Six Months
n System Reasoning

n Formal system specifications
n System Testing / Run-time Monitoring
n System Verification

n Continued evolution of Microkit target
n More systematic scheduling and communication, support for LionsOS

concepts
n Efficiency improvements for seL4 microkit and hardening of

infrastructure code
n Build-out for assurance framework, traceability, attestation

HAMR - SysMLv2/AADL to Rust + seL4

