
 

© 2014 General Dynamics. This document is provided “as is” without any warranties, express or implied. 
GENERAL DYNAMICS PROPRIETARY 

 

 

 
 
Mathematically Verified Software Kernels: 
Raising the Bar for High Assurance 
Implementations 
 
 

Dr Daniel Potts, VP of Engineering, General Dynamics C4 Systems 

Rene Bourquin, Member Technical Staff, General Dynamics C4 Systems 

Leslie Andresen, Technical Director, General Dynamics C4 Systems 

 

Dr June Andronick, Senior Researcher, NICTA 

Dr Gerwin Klein, Senior Principal Researcher, NICTA 

Prof Gernot Heiser, Research Group Leader, NICTA 

 

 

 

Version 1.0 

 

JULY 2014 

  



Mathematically Verified Software Kernels: Raising the Bar for High Assurance Implementations  

© 2014 General Dynamics. This document is provided “as is” without any warranties, express or implied. 
GENERAL DYNAMICS PROPRIETARY 

.  
 
  

2 

Introduction 
 

Recent updates to security guidance documents, such as the US National Institute of Standards and 
Technology (NIST) Special Publication (SP) 800-53 Rev 4, draw attention to the need for trustworthy 
implementations, in conjunction with the application of associated controls, as part of the development of 
a comprehensive assured solution. It outlines the importance of addressing not only how you implement, 
but also what you implement to ensure proper security functionality and security assurance. 

Emerging developments in formally verified separation kernels and high assurance architectures 
significantly strengthen the assurance that can be achieved, and enable wider adoption of this approach.  
The key tenets of this paradigm are (1) the appearance of more general-purpose yet high-performance 
separation kernels that support more complex componentized architectures, and (2) the comprehensive 
formal verification of the trusted computing base (TCB).  This paper examines specific examples of these 
techniques, and discusses their foundational applicability to improve system security and resilience. 

First, we are building real-world, software-based, componentized, high assurance mobile and critical 
embedded systems, based on third-generation separation kernels, such as the OKL4 Microvisor and the 
seL4 microkernel.  Both have realized the art of the possible and are now being used to build commercial 
and defense systems with more compelling, stronger security, safety and reliability postures.  For 
example, the Secure Mathematically-Assured Composition of Control Models (SMACCM) project, funded 
by DARPA, builds upon the seL4 kernel to demonstrate a complete high-assurance system of significant 
complexity, ultimately a military UAV. 

Second, we have demonstrated the comprehensive formal verification of the seL4 microkernel, with a 
complete proof chain from precise, formal statements of high-level security and safety properties to the 
binary executable code.  

Finally, we address affordability, which has previously limited the broad adoption of formal methods to 
‘only as absolutely necessary’ applications.  Today, the cost of producing formally verified, high-
assurance systems is on the order of $200-400/LoC (Lines of Code) for critical code.  This cost is much 
lower than using other traditional (and weaker) techniques to establish high assurance, allowing industry 
to ‘have its cake and eat it too’ – affordability is no longer a barrier to security.  We discuss this further in 
Section 3.0. 

In summary, we assert that the use of formal methods for software verification, coupled with high 
assurance architectures, is now the state of the art, and therefore should ‘set the bar’ for assured 
solutions.  This approach is ready to be applied, in support of emerging security guidance documents, for 
use in a broad and diverse class of applications, from control systems of drones, to multi-domain 
commercial-off-the-shelf (COTS) mobile devices. 

About the Authors – Our Collaboration 
 

General Dynamics C4 Systems, including its recent acquisition of Open Kernel Labs, and NICTA are 
long-term, committed partners in the development of trusted systems that offer a greater level of 
assurance, richness, and functionality than has been available in the past.  Through cutting-edge 
research and architectural development, we evolve it, mature it, make it simple, and ultimately deliver it in 
products.  Our earlier research in separation and micro-kernels has now been deployed in over 2 billion 
mobile and embedded devices.   

We plan to do the same with seL4.   By leveraging our complementary IP and key strengths in state-of-
the-art systems research, development, and productization of emerging technology, we are committed to 
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adopting these technologies in our own products, while enabling others to do the same through industry 
and Government engagement. 

1.0 High Assurance Architecture: "Build security in" 
 

In this section, we advocate that high-assurance software-based systems should be built on a 
componentized architecture, with a minimal trusted computing base, and with isolation (or controlled 
communication) provided by an underlying general-purpose separation kernel.  

The architecture has the following characteristics: 

1. At its core, a microkernel that minimizes the amount of code with privileged access to the 
hardware, and that is formally proven to possess precisely defined isolation properties. 

2. A minimal set of application-level components that make up the rest of the TCB. Leveraging the 
isolation properties of the microkernel, these components are formally verified to behave as 
specified. 

3. Precisely defined information and resource access, enforced by the microkernel, ensuring that 
one fault in the system does not compromise the whole system. 

4. The remaining (largest) part of the system being untrusted, contributing to utility of the system 
without being able to interfere with critical operations.. 

This implies a drastically shrunk security boundary, small enough to prove it correct, and the ability to 
maximize the use of untrusted (e.g., COTS and open-source) components for greater overall flexibility, 
affordability and utility, without compromising security. 

These combine to allow the implementation of high-assurance architectures providing significantly 
improved system resilience, while also reducing costs associated with the need to certify every piece of 
the entire system with the same scrutiny. 

An example of the architecture is given in Figure 0, showing how the General Dynamics OKL4 Microvisor 
has been successfully applied towards the development of multi-domain and multi-persona mobile 
devices.  The OKL4 Microvisor kernel provides the foundation for isolated and separate 
componentization. Device drivers and critical encryption functionality, including network VPN and data-at-
rest (DAR) flash encryption, is removed from the Android personas.   This provides the system with an 
increased level of defense-in-depth against attack on critical components. 

The encryption routines also become non-by-passable from within the Android personas.  That is, an 
exploit or malicious user cannot bypass or disable the network accessible only via the VPN component, 
nor can it disable the data-at-rest (DAR) component providing full disk encryption.   Furthermore, the 
attack service for these components becomes quite small and easy to validate for correctness and 
resilience against attacks. 

Finally, the OKL4 Microvisor supports access and information-flow controls, enabling the system to 
implement different policies defined at deployment or run time.  

Similar systems are being built on top of seL4 (including the SMACCM project mentioned above, and 
cross-domain solutions). In these systems, information flow policy enforcement will be formally proved. 
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2.0 Formal verification: "Prove that you've built security in" 
 

High-assurance systems need strong, measurable verification of reliability, safety and security. 
Certification for use requires evidence that these requirements are met. Traditionally, the best achievable 
evidence that a critical system behaves correctly and enforces some desired security or safety property 
derives from a combination of testing, code inspection, engineering processes, and formal modeling, 
augmented by partial verification. This approach is expensive, yet imperfect. 

The use of Formal Methods is recognized as the strongest guarantee that can be provided about software 
behavior. For instance, the highest levels of certification under the Common Criteria security certification 
scheme demand formal models of the system and formal proofs relating the models to security 
requirements [1]. In the avionic space, the latest certification scheme DO-178C introduces a supplement 
providing guidelines on how formal methods should be used to complement testing [2].  

Until recently, however, there was a lack of evidence that a comprehensive use of Formal Methods was 
feasible, effective and affordable. Furthermore, an overloaded and overly broad use of the notion of 
“formal verification” created confusion and undermined confidence in the approach. This has slowed 
adoption, and created a reluctance of certification bodies to impose more stringent requirements on the 
use of Formal Methods.  
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Figure 0: An example multi-persona Android platform built leveraging a separation 
kernel (OKL4 Microvisor) for componentization. This approach enables stronger 
policy controls, non-by-passable guaranteed invocation of encryption, and other high-
assurance capabilities. 
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Here we show that formal verification, of strong properties, down to the machine code, of real-world 
systems, is feasible at reasonable cost: seL4 is a real-world, general-purpose operating system, with a 
guarantee that its machine code is correct with respect to its specification and that it enforces critical 
security properties such as information flow control, integrity and confidentiality. Moreover, we establish 
that an assurance level beyond the highest existing security certification standards can be achieved at a 
cost that is lower than with traditional approaches [3]. We therefore claim that nothing less than 
comprehensive formal verification should be demanded for the highest level of assurance for critical 
systems. 

We first comment on present limitations and inhibitors to more widespread adoption of Formal Methods, 
and show how to overcome them. 

Testing and inspection can never exhaustively cover all behaviors and inputs of a non-trivial system, and 
thus cannot show the absence of defects or vulnerabilities. In contrast, Formal Methods build on a 
mathematical model of the system, on unambiguous and precise statements of the desired properties, 
and on mathematical proof that the properties are satisfied by the model. Reasoning about all possible 
behaviors of a system, and proving correctness and absence of defects, is then possible.  

All formal verifications are based on assumptions, which scope what is formalized and verified:  

(a) The assumption that the model is a faithful representation of the system: how much does a 
guarantee about the model say about the system itself?  

(b) The assumption that the formal statement of the properties faithfully represents the desired 
behavior of the system. The properties range from deep statements about the reliability, 
security and safety of the system (such as the typical certification requirements of functional 
correctness, confidentiality, integrity, etc), to shallow properties concentrating on checking for 
patterns, such as absence of runtime errors or compliance to coding conventions. 

(c) The assumption about the soundness of the tool/framework used: how much can we trust the 
tool used to produce the proof? 

The term "verified" has been used for a wide range of approaches of varying strength, often without 
explicit statement of the limitations and assumptions. This ranges from using an unsound tool to check 
one specific property about a very abstract model of a system, to using a sound tool to proof full 
functional correctness of the binary code of the system. 

 

Recommendation 1: Every claim of a verified system should state precisely what has been verified, and 
explicitly state all limitations and assumptions under which the guarantee holds. 

 

It seems clear that the highest assurance levels should require the strongest certification, i.e., specifically 
using formal mathematical proof. To date this is not mandated, as it was, until recently, considered 
infeasible. Here we describe how the latest progress in formal tools and techniques led to a 
demonstration of feasibility of providing strong, measurable guarantees for real-world systems. 

Regarding faithfulness of the formal model, Assumption (a) above, the closer the model is to the machine 
code that is executed on the running system, the stronger the guarantees can be that are derived from 
the model. Latest research provides formally verified compilers [4] and independent, automated 
verification of the correctness of the compiler-generated code [5]. The latter was used to prove that seL4 
machine code is a correct refinement of its high-level, formal specification, reducing the assumptions to 
the correctness of the model of the hardware. In contrast, Common Criteria's highest evaluation level 
(EAL7) requires formal refinement proof down to low-level design model only, with informal links between 
the model and the source code, and no requirement to verify compilation correctness.  
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Recommendation 2: Critical systems should be required to provide guarantees down to the binary level. 

 

There is a big gap between this low-level correctness requirement and assumption (b) above, which asks 
for strong guarantees of deep, yet high-level properties, whose formal statement should correctly express 
the intuitive desired behavior. Assumption (b) calls for (i) an expressive high-level language to denote the 
desired property clearly and unambiguously, and (ii) verification to be performed at an abstract level, 
where reasoning is practical and scalable.  

To reconcile the need for abstraction with the need for machine-level guarantees, we require a formal 
proof of full functional correctness of the source and machine code against a high-level abstract 
specification, as was done for seL4 [3], which then allows carrying out verification of high-level properties, 
such as integrity [6] and confidentiality [7], at the abstract specification level. Full functional correctness 
means that the abstract specification is a complete and precise description of all the possible functional 
behaviors of the system, and the refinement proof shows that the behavior of the binary implementation is 
fully captured by the abstract specification. This is a strong property in itself, and additionally allows 
proving any further properties that are preserved by refinement on the significantly simpler abstract 
specification, while still getting the guarantee down to the binary level. Proof of further high-level 
properties is also a way to increase the confidence in that the specification represents the intuitive 
expected behavior. 

Assumption (c), about the trust in the verification tool, calls for use of sound or foundational tools. For 
instance, the seL4 verification work used the Isabelle theorem prover, where soundness-critical code is 
concentrated in a relatively small proof kernel, and statements are then defined and proved from first 
principles (not axiomatized). Additionally it can produce external proof representations that can be 
independently checked by a small, simple proof checker [8]. More generally, certification schemes usually 
require evidences of soundness of the formal methods techniques and tools used to produce proof 
artifacts. 

 

3.0 Keep it Affordable 
So far, we have provided arguments supporting the feasibility of formal verification of strong properties at 
machine level of real-world systems. We now have to show that cost does not have to be an obstacle. 
The most compelling evidence lies in the costs associated to seL4 verification [3]: $362 per line of code 
for the correctness proof plus $78 per line for the security proofs. This is a very low figure for the 
strongest assurance ever produced about the security of a general-purpose OS kernel. It is, by 
comparison, much lower than the industry rule-of-thumb of $1,000 per line of code for designing, 
implementing and certifying a system under Common Criteria EAL6, where only semi-formal model of the 
design are required, with informal mapping to the code, leading to much weaker guarantees than seL4 
proofs.  

It should be noted that the above cost included a significant amount of learning and development of new 
techniques; as such, we estimate that a similar verification effort could now be done at half the cost, or 
around $200/LOC. This is then comparable to the cost of producing low-assurance software of a similar 
nature [3]. 

In addition, formal verification offers auxiliary benefits in terms of more focused testing. As formal 
verification requires making all assumptions explicit, testing is only required to establish that the 
assumptions are satisfied. The recognition of the complementary nature of testing and formal verification 
is slowly starting to make its way into certification schemes (e.g., in DO-178C), but more needs to be 
done to avoid duplication of effort, where formal proofs make some testing redundant. If incorporated into 
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the development process, with iteration between design, verification and coding, this approach also leads 
to early design validation and bug detection [9], leading to further cost reduction opportunities. 

Another advantage of formal verification at code level is in terms of system maintenance and evolution: 
re-running the proof on a variant of the code gives immediate feedback if the changes break any of the 
previously established security guarantees, in stark contrast to current approaches, which require 
expensive (informal) re-validation after every change. This should be exploited in reducing effort and 
costs in re-certification of variants of certified systems. 

This is further supported by previous efforts such as those of the Trusted Computer System Evaluation 
Criteria (TCSEC) [10], also known as the Orange Book. The Rating Maintenance Phase (RAMP) process 
from the TCSEC would work today as it focuses on the changes made and how they would affect the 
overall system.  More so, it specifies that at A1 level, formal verification was required. As we contend, 
such a process is compelling as it reduces the burden and effort to develop and maintain a formally 
verified system. 

Finally, with the componentized architecture discussed in the previous section, only the Trusted 
Computing Base needs to be verified.  If "built right", this allows for large (million-line) systems to be 
developed - by investing only in the verification of a microkernel and few trusted components, in total 
comprising a few tens of thousands of lines.  

To illustrate further the benefit of our approach, we show how it would apply to the high assurance 
architecture presented in the previous section. We have been advocating that high assurance systems 
should be built on a componentized architecture, with a minimal TCB and with isolation (or controlled 
communication) provided by an underlying kernel. To prove that this approach produces a system with 
the desired properties, we need to:  

(i) Prove that the system is set up correctly: Prove that the components are created according to 
the high-assurance architecture and that the authority they are provided with is conformant to 
the architecture specification (see for instance [11]). 

(ii) Prove that the TCB is trustworthy: Prove that even if parts of the system are compromised, the 
kernel and all the components identified as "trusted" in the architecture are not violating the 
desired property. This requires verification of the (small) TCB, including functional correctness 
of the kernel. For some TCB component, proving weaker properties than full functional 
correctness may be sufficient.  

(iii) Prove that untrusted components can be ignored: prove that whatever their behavior is, the 
authority provided to them at set-up indeed does not allow them to violate the desired 
property. This simply requires proving that the desired property holds under no assumption 
about their behavior (in other words, such components are assumed to be malicious). The only 
assumption made is that they cannot perform operations not allowed by their authority. For this 
we need to provide a proof that their authority is enforced by the kernel [7] [6]. 

The purpose of the formal proofs is to validate the careful design of the architecture, where the 
architecture in turns aims at reducing the cost of such verification. 
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Conclusion 
The state-of-the-art in formal verification shows that it is now feasible and cost-effective to demand 
strong, code/machine level guarantees as table stakes for highly critical systems. Leveraging separation 
kernels to create high assurance architectures with formally verified software components, as outlined in 
this paper, provides a means to implement such systems with measurable security enhancements. 
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