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Unparalleled mathematical proofs
of correctness and security

= The most trustworthy foundation
for safety- and security-critical systems
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Unparalleled mathematical proofs
of correctness and security

NOW & IN THE FUTURE
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More architectures verified

More features verified

More platforms verified

More cores
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Less need for
expertise & maintenance
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Overview: 5 main areas Proofcraft is working on

a )
More architectures verified Arm 64-bit (AArch64)

\_ _/
é )

More features verified Mixed-criticality support (MCS)
_ .
é )

More platforms verified Automated platform port verification
_ .
é )

Less need for
expertise & maintenance

Proof architecture split (arch-split)

More cores Verified multikernel (MK) on multicore




Overview: status & plans in a nutshell

More platforms verified

Less need for
expertise & maintenance

More cores

Automated platform port verification

Proof architecture split (arch-split)

Verified multikernel (MK) on multicore

Now: 18/32 configs verified (56%)
Aim: 90-100% for existing ones
+ automation for new ones

Done: abstract invariants
Now: refinement proofs

See next talk
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More features verified

Arm 64-bit (AArch64)

Mixed-criticality support (MCS)
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AArchoe4

Arm 64-bit (HYP!)

A& NCSC

(no HYP) {I“!@
Arm 32-bit RISC-V 64-bit

X86 64-bit

sel 4 proofs

Done

Ongoing

Future
(non-MCS, unicore)

Done: FC
Now: integrity (Q1°25)
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Overview: status & plans in a nutshell

More features verified

Arm 64-bit (AArch64)

Mixed-criticality support (MCS)
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What is MCS?
- Support for Mixed-Criticality Systems

- Time as a resource
- scheduling context objects
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A Two examples:

e bound notification endpoints
e pbitfield scheduler optimisation




The proofs have evolved with new features over the years
A Two examples:

e bound notification endpoints
e pbitfield scheduler optimisation

MCS is different:
e large, invasive change
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Big Feature: Mixed-Criticality Systems

non-MCS

MCS

o~
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Verification of multiple configs in parallel
Arm 64-bit

70N\

=%
non-MCS Arm ‘ RISC-V
32-bit ‘ 64-bit

X86 64-bit

64-bit

CS /h,))msc-v

32-bit/

proof & DARPA (PROVERS)




What makes MCS so difficult to verify?
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What makes MCS so difficult to verify?

- Many new lines of code (an ~15% increase)

- New kernel objects (scheduling context objects and reply objects)
- New invariants required, pre-existing invariants impacted

- Many new functions in the kernel (in particular, new system calls)

- Many pre-existing functions are now much longer
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Loops in MCS

| I

t 0 t_ 1 t 2 t 3

Problem... we need at least 2 * WCET in the head refill

Solution: merge refills together... and keep merging refills until
we have at least 2 * WCET (overflow?)

Termination? The scheduling context must have a budget of at
least 2 * WCET —> new system-wide invariant

Data refinement? Ring buffer of refills versus list of refills

Time
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Unparalleled mathematical proofs
of and

More architectures verified
More features verified
More platforms verified

More cores

Less need for
expertise & maintenance
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