JProofcrof:c_]

sel4® verification: status and plans

Michael Mclnerney @ Proofcraft

Michael Mclnerney | selL4 summit 2024, Sydney, Australia

The world’s most highly assured operating system kernel

The world’s most highly assured operating system kernel

e

Unparalleled mathematical proofs
of correctness and security

= The most trustworthy foundation
for safety- and security-critical systems

Unparalleled mathematical proofs
of correctness and security

Unparalleled mathematical proofs
of correctness and security

(FC) (integrity&confidentiality)

Unparalleled mathematical proofs
of correctness and security

NOW & IN THE FUTURE

~

More architectures verified

More features verified

More platforms verified

More cores

I

-

Less need for
expertise & maintenance

~

_J

Overview: 5 main areas Proofcraft is working on

a)
More architectures verified Arm 64-bit (AArch64)

_ _/
é)

More features verified Mixed-criticality support (MCS)
_ .
é)

More platforms verified Automated platform port verification
_ .
é)

Less need for
expertise & maintenance

Proof architecture split (arch-split)

More cores Verified multikernel (MK) on multicore

Overview: status & plans in a nutshell

More platforms verified

Less need for
expertise & maintenance

More cores

Automated platform port verification

Proof architecture split (arch-split)

Verified multikernel (MK) on multicore

Now: 18/32 configs verified (56%)
Aim: 90-100% for existing ones
+ automation for new ones

Done: abstract invariants
Now: refinement proofs

See next talk

Overview: status & plans in a nutshell

a)
More architectures verified Arm 64-bit (AArch64)
\ _
4)
More features verified Mixed-criticality support (MCS)

10

Overview: status & plans in a nutshell

s

\—

More architectures verified

~

_/

More features verified

Arm 64-bit (AArch64)

Mixed-criticality support (MCS)

11

AArchoe4

Arm 64-bit (HYP!)

A& NCSC

(no HYP) {I“!@
Arm 32-bit RISC-V 64-bit

X86 64-bit

sel 4 proofs

Done

Ongoing

Future
(non-MCS, unicore)

Done: FC
Now: integrity (Q1°25)

12

Overview: status & plans in a nutshell

More features verified

Arm 64-bit (AArch64)

Mixed-criticality support (MCS)

13

What is MCS?

RN

What is MCS?

- Support for Mixed-Criticality Systems

I

What is MCS?

- Support for Mixed-Criticality Systems

LN

What is MCS?
- Support for Mixed-Criticality Systems

- Time as a resource

LN

What is MCS?
- Support for Mixed-Criticality Systems

- Time as a resource
- scheduling context objects

LN

The proofs have evolved with new features over the years 4]

The proofs have evolved with new features over the years
A Two examples:

e bound notification endpoints
e pbitfield scheduler optimisation

The proofs have evolved with new features over the years
A Two examples:

e bound notification endpoints
e pbitfield scheduler optimisation

MCS is different:
e large, invasive change

21

Big Feature: Mixed-Criticality Systems

non-MCS

MCS

o~
o~

Verification of multiple configs in parallel
Arm 64-bit

70N\

=%
non-MCS Arm ‘ RISC-V
32-bit ‘ 64-bit

X86 64-bit

64-bit

CS /h,))msc-v

32-bit/

proof & DARPA (PROVERS)

What makes MCS so difficult to verify?

RN

What makes MCS so difficult to verify?

- Many new lines of code (an ~15% increase)

I

What makes MCS so difficult to verify?

- Many new lines of code (an ~15% increase)

- New kernel objects (scheduling context objects and reply objects)

g

What makes MCS so difficult to verify?

- Many new lines of code (an ~15% increase)
- New kernel objects (scheduling context objects and reply objects)

- New invariants required, pre-existing invariants impacted

g

What makes MCS so difficult to verify?

- Many new lines of code (an ~15% increase)
- New kernel objects (scheduling context objects and reply objects)
- New invariants required, pre-existing invariants impacted

- Many new functions in the kernel (in particular, new system calls)

g

What makes MCS so difficult to verify?

- Many new lines of code (an ~15% increase)

- New kernel objects (scheduling context objects and reply objects)
- New invariants required, pre-existing invariants impacted

- Many new functions in the kernel (in particular, new system calls)

- Many pre-existing functions are now much longer

g

Loops in MCS

RN

Loops in MCS

Time

LN

Loops in MCS

e RN By I

Time

RN

Loops in MCS

|y I B) I

t 0

Time

LN

Loops in MCS

|y I B) I

t 0

Problem...

Time

LN

Loops in MCS

|y I B) I

t 0

Problem... we need at least 2 * WCET in the head refill

Time

RN

Loops in MCS

| I

t 0 t_ 1 t 2 t 3

Problem... we need at least 2 * WCET in the head refill

Solution: merge refills together...

Time

RN

Loops in MCS

| I

t 0 t_ 1 t 2 t 3

Problem... we need at least 2 * WCET in the head refill

Solution: merge refills together... and keep merging refills until
we have at least 2 * WCET (overflow?)

Time

N

Loops in MCS

| I

t 0 t_ 1 t 2 t 3

Problem... we need at least 2 * WCET in the head refill

Solution: merge refills together... and keep merging refills until
we have at least 2 * WCET (overflow?)

Termination?

Time

N

Loops in MCS

| I

t 0 t_ 1 t 2 t 3

Problem... we need at least 2 * WCET in the head refill

Solution: merge refills together... and keep merging refills until
we have at least 2 * WCET (overflow?)

Termination? The scheduling context must have a budget of at
least 2 * WCET —> new system-wide invariant

Time

RN

Loops in MCS

| I

t 0 t_ 1 t 2 t 3

Problem... we need at least 2 * WCET in the head refill

Solution: merge refills together... and keep merging refills until
we have at least 2 * WCET (overflow?)

Termination? The scheduling context must have a budget of at
least 2 * WCET —> new system-wide invariant

Data refinement? Ring buffer of refills versus list of refills

Time

RN

Unparalleled mathematical proofs
of and

More architectures verified
More features verified
More platforms verified

More cores

Less need for
expertise & maintenance

JPrccfcrofb

https://proofcraft.systems

41

https://proofcraft.systems

