
The Secure
Multiserver Operating
System (SMOS)
Framework

Alwin Joshy, Kevin Elphinstone, Gernot Heiser, Craig McLaughlin

File system

Motivation

Current operating systems are
not secure

Linux > 25 million SLoC

Inevitable trajectory of monolithic
kernel design

© Alwin Joshy 2024, CC BY 4.02

File system

Ethernet driver

Network stack

Scheduler

Memory
manager

Kernel module

Security
module

Random driverRandom driver

Current operating systems are not secure

People have been trying to fix this problem for half a century

We need secure operating systems

DTMach

Too
complicated

DTOS

Verification is
too hard L

FLASK

???

SELinux

Let’s just do it
in Linux J

3 © Alwin Joshy 2024, CC BY 4.0

Current operating systems are not secure
 => is provably secure

How can we use seL4 to build a dynamic, general-purpose, provably secure operating
system?

Microkernel design à better for security, but does the past continue to haunt us?

Enter SMOS

Verification Performance

4 © Alwin Joshy 2024, CC BY 4.0

Goals of SMOS

Dynamic
Architecture

Flexible
Policy

Verifiable
Enforcement

Uncompromising
Performance

5 © Alwin Joshy 2024, CC BY 4.0

What does a SMOS system look like?

6 © Alwin Joshy 2024, CC BY 4.0

What does a SMOS system look like?

Root Server

Conn.
Server

Sec.
Server

ClientObject Server

Connection (Endpoint)

7 © Alwin Joshy 2024, CC BY 4.0

Policy enforcement mechanism

Root Server

Conn.
Server

Sec.
Server

ClientFile Server

Connection (Endpoint)

obj_open(pink_file, READ)

8 © Alwin Joshy 2024, CC BY 4.0

Policy enforcement mechanism

Root Server

Conn.
Server

Sec.
Server

ClientFile Server

Connection (Endpoint)

smos_auth(cli_sid, file_sid, obj_open, READ)

9 © Alwin Joshy 2024, CC BY 4.0

Root Server

Conn.
Server

Sec.
Server

ClientFile Server

Connection (Endpoint)

smos_auth(cli_sid, file_sid, opj_open, READ)
 <= permit/deny

10 © Alwin Joshy 2024, CC BY 4.0

class: top secret class: secret≥
Policy enforcement mechanism

Policy enforcement mechanism

Root Server

Conn.
Server

Sec.
Server

ClientFile Server

Connection (Endpoint)

file_open(pink_file, READ)
 => success/deny

11 © Alwin Joshy 2024, CC BY 4.0

Policy enforcement mechanism

Root Server

Conn.
Server

Sec.
Server

Client
Trusted

File Server

Connection (Endpoint)

12 © Alwin Joshy 2024, CC BY 4.0

What makes an OS “secure”?

Complete
mediation

Tamperproof Verifiable

Reference
Monitor

13 © Alwin Joshy 2024, CC BY 4.0

How can SMOS satisfy the reference
monitor concept?

Security
Server

Trusted
File Server

Client 1

Client 2

Trusted
I2C

subsystem

14 © Alwin Joshy 2024, CC BY 4.0

How can SMOS satisfy the reference
monitor concept?

Security
Server

Trusted
File Server

Client 1

Client 2

Trusted
I2C

subsystem

Correct implementation
of policy

15 © Alwin Joshy 2024, CC BY 4.0

How can SMOS satisfy the reference
monitor concept?

Security
Server

Trusted
File Server

Client 1

Client 2

Trusted
I2C

subsystem

Correct participation in
framework

16 © Alwin Joshy 2024, CC BY 4.0

How can SMOS satisfy the reference
monitor concept?

Non-interference

Security
Server

Trusted
File Server

Client 1

Client 2

Trusted
I2C

subsystem

17 © Alwin Joshy 2024, CC BY 4.0

Implementation progress

Engineering

Initial C prototype for exploring
concepts/designs

Rewrite in Rust (using rust-seL4) –
ongoing

Verification
Formal modelling in Lean4 of a
general class of access control-
based systems

Policies mandate sensitive
information leakage is within certain
acceptable bounds

Aim to connect SMOS instances to
instances of the general class of AC
systems

18 © Alwin Joshy 2024, CC BY 4.0

Next steps

Extend sDDF for dynamic systems

Verified interface generation

Implementation of non-trivial security policies

19 © Alwin Joshy 2024, CC BY 4.0

Thanks for listening!

Any questions/comments?

© Alwin Joshy 2024, CC BY 4.020

Image credits
Some images were taken from

rawpixel.com / Freepik

'Flaticon.com

© Alwin Joshy 2024, CC BY 4.021

