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Current operating systems are not secure

People have been trying to fix this problem for half a century

We need secure operating systems

DTMach

Too 
complicated

DTOS

Verification is 
too hard L

FLASK

???

SELinux

Let’s just do it 
in Linux J
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Current operating systems are not secure
 =>                 is provably secure

How can we use  seL4 to build a dynamic,  general-purpose, provably secure operating 
system?

Microkernel design à better for security, but does the past continue to haunt us?

Enter SMOS

Verification Performance
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Goals of SMOS

Dynamic
Architecture

Flexible
Policy

Verifiable
Enforcement

Uncompromising
Performance 
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What does a SMOS system look like?
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What does a SMOS system look like?
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Policy enforcement mechanism

Root Server

Conn. 
Server

Sec. 
Server

ClientFile Server
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obj_open(pink_file, READ)
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Policy enforcement mechanism

Root Server

Conn. 
Server

Sec. 
Server

ClientFile Server

Connection (Endpoint)

smos_auth(cli_sid, file_sid, obj_open, READ)
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Root Server

Conn. 
Server

Sec. 
Server

ClientFile Server

Connection (Endpoint)

smos_auth(cli_sid, file_sid, opj_open, READ)
 <= permit/deny
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Policy enforcement mechanism

Root Server

Conn. 
Server

Sec. 
Server

ClientFile Server
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file_open(pink_file, READ)
 => success/deny
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Policy enforcement mechanism
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What makes an OS “secure”?

Complete 
mediation

Tamperproof Verifiable

Reference
Monitor 
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How can SMOS satisfy the reference
monitor concept?
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How can SMOS satisfy the reference
monitor concept?
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Correct implementation 
of policy
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How can SMOS satisfy the reference
monitor concept?
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How can SMOS satisfy the reference
monitor concept?

Non-interference

Security 
Server

Trusted 
File Server

Client 1

Client 2

Trusted 
I2C 

subsystem
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Implementation progress

Engineering

Initial C prototype for exploring 
concepts/designs

Rewrite in Rust (using rust-seL4) – 
ongoing

Verification
Formal modelling in Lean4 of a 
general class of access control-
based systems

Policies mandate sensitive 
information leakage is within certain 
acceptable bounds

Aim to connect SMOS instances to 
instances of the general class of AC 
systems
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Next steps

Extend sDDF for dynamic systems

Verified interface generation

Implementation of non-trivial security policies
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Thanks for listening!

Any questions/comments?
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