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Pancake: overview

« Pancake [PLOS’23] is an in-development language for verified low-level
systems programming

« With a verified compiler, developed on HOL4.

« In particular: it aims for verified “device drivers” and other OS

components.
Device driver bugs are the
* Design goals: leading cause of OS

* Simple, easy to learn syntax compromise, dccounting for
> the majority of the CVEs

« Simple, easy formal semantics
->

« Light resource footprint: no runtime, no GC
->
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Pancake and sel 4 @2 . O

Pancake aims to
enhance the guarantee

at this level —
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Pancake : sample code

.. export fun handle irq() {
Looks similar to C? var got char = 0;
got char = getchar();

if (got_char == -1) {
Pancake aims to be instantly ; gﬂtgr? -1;

familiar to C programmers
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while true {

}

var buffer addr = @base + 544;
var dequeue ret = 0;
// 0: dequeue avail rx

dequeue_ret = serial dequeue avail(0, buffer_addr);

if (dequeue ret !'= 0) {
// dequeue avail ring is empty
return -1;

}

var enqueue ret = 0;

// 0: enqueue used rx

enqueue_ret = serial enqueue used(0, got char, buffer_addr);

if (enqueue ret '= 0) {
return -1;

}
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Pancake

No types!
- Everything is a machine word

Simpler semantics!

- Complete formal semantics fits in a few
hundred lines of HOL4
- Almost nothing is undefined behaviour

With a verified compiler!
- Semantic equality from AST to ISA levels
- Using part of CakeML
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If you are verifying your code
anyway, types don’t seem to
help much actually

Simplifying design decisions:

- No dynamic allocation

- Single-threaded only

- No pointers to stack variables
- No side effects in expressions
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CakeML

Pancake is an offspring of CakeML.

CakeML is an impure functional programming language
similar to Standard ML

fun exists f xs = The machine code
case xs of [] => False generated at the bottom
| x::xs => f x orelse exists f xs has the same observable
events as the source AST

...with

- optimising compiler & bootstrapped binary
- verified from AST down to the ISA level

- developed on theorem prover HOL4
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Compiling into CakeML A LA

This is used for HOL (synthesis)

bootstrapping [ICFP'12] ﬁ
the binary compiler

PureCake [PLDI'23]

Kalas [ITP’22]

4 Pancake [PLOS’23]\

Pancake compiles into wordLang,
halfway through the compiler
K(Cakel\/lL is too high level)

/
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Compiling into CakeML

End-to-end correctness is proved for Pancake compiler

wordLang:

after GC is introduced, where everything’s a word,
and almost everything is unmanaged except the stack

No GC for Pancake

We extended Pancake with

shared memory feature
(but not for CakeML)
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Jommmm Pancake passes -—~~
/ \

Parse concrete
syntax

Call optimisation

Replace loops
\  with tail calls
\

\.

Half a verified compiler for free!
(no need to verify register
allocation, instruction selection,
etc.)

/ . \
Transformations Languages

( Pancake AST

Flatten structs < Py

Normalise program

Shrink cutsets and expressions
delete unused <: occur only on
assignments

Languages
CasHsyia) —
CaleMLAST) 2

lan
wwwwww

Pancake syntax

CreplLang:

imperative

language
without structs

<

LoopLang:

RHS of
assignment

< statements

WordLang:
imperative
language with
machine words,
memory and
a GC primitive

StackLang:
imperative
language

with array-like
stack and
optional GC

LabLang:
assembly lang.
ARMv6

\
\

© Miki Tanaka 2024, CCBY 4.0

CakeML passes

VUV U VWU UV YU YUY

Simplify program

; Co
.o \ language b
S \ Re
. N
N \
\
\
\
\

> Select target instructions
> Perform SSA-like renaming
D Force two-reg code (if req.),
> Remove deadcode
D Allocate register names
D Concretise stack

D Introduce (raw) calls past
function preambles

> Implement GC primitive

> Turn stack accesses into
memory acceses

> Rename registers to matchi
arch registers/conventions

> Flatten code
> Delete no-ops (Tick, Skip)

Encode program as
concrete machine code

Silver ISA




Compiling into CakeML

Bootstrapped binary for Pancake is available
(as part of CakeML binary)

./cake --pancake

Pancake compiler is defined as a HOL
function. Pancake binary is obtained
via CakeML by the synthesis tool and
in-logic compilation.

https://cakeml.org/
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syntax
4 Pancake AST
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Call optimisation <
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> Allocate register names
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> Introduce (raw) calls past
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arch registers/conventions
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> Delete no-ops (Tick, Skip)

Encode program as
concrete machine code
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Good progress in relatively

Pancake : performance @ . O

short time

But still noticeable overhead.
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Reducing ffi calls
Better code generation

Further improvement
expected
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C vs. Pancake Ethernet Driver User Cycle (Maaxboard)

B Cdriverusercycle [ Pancake driver usercycle @ overhead (vs.C)
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Pancake : semantics

[ESOP’16]
« Used for compiler correctness proof (similar to CakeML)
 Deterministic

- Not great for non-determinism The “ ” carries a clock and an oracle:
« Finite structure - Divergence = as limit of (clock -> )
- Not great for divergence - Evaluation uses the oracle to model ffi

[Xia et al, POPL 20]
« Coinductive, captures interactions and continuations
- Direct representation of divergence
- No clock or oracle in the state*
« Semantic itree interacts with any oracle
« Soundness proved
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Pancake: driver verification

Translation
from Pancake to Viper

Functional big-step semantics , direct verification
Interaction tree semantics Hoare logic
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Target:
virtualiser
serial driver
ethernet driver

Decompilation
from Pancake to HOL
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Pancake

Thank you!

(Almost) all this stuff is open source and freely available here:
https://code.cakeml.org

Read more at:
https://cakeml.org/pancake

Hang out with us on Discord:
https://discord.gg/a8UUs6Cebm
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