School of Computer Science & Engineering
»
UNSW §Tn'cl>s§§::ys Trustworthy Systems Group

Pancake: A Language for Verified Systems
Programming

Miki Tanaka - = E
ay s N” Verified Systems Programming
miki.tanaka@unsw.edu.au

O =

Pancake: overview

« Pancake [PLOS’23] is an in-development language for verified low-level
systems programming

« With a verified compiler, developed on HOL4.

« In particular: it aims for verified “device drivers” and other OS

components.
Device driver bugs are the
* Design goals: leading cause of OS

* Simple, easy to learn syntax compromise, dccounting for
> the majority of the CVEs

« Simple, easy formal semantics
->

« Light resource footprint: no runtime, no GC
->

Pancake: A Language for Verified Systems Programming, Oct '24 © Miki Tanaka 2024, CC BY 4.0 UNSW
A

vvvvvv

Pancake and sel 4 @2 . O

Pancake aims to
enhance the guarantee

at this level —

3 Pancake: A Language for Verified Systems Programming, Oct '24

LionsOS

Tx Copy Tx Virt NIC

Rx Copy Rx Virt Driver

Hardware

© Miki Tanaka 2024, CCBY 4.0 @5 UNSW

Pancake: contributors

UNSW

3>
P com <G

Technology
TI I Innovation
Institute

Pancake: A Language for Verified Systems Programming, Oct '24

A Language for

Verified Systems Programming

© Miki Tanaka 2024, CC BY 4.0

vvvvvv

Pancake: contributors

Current collaborators:

Magnus O. Myreen Michael Norrish
Thomas Qu Tiana Tsang Ung
Halogen Truong Charran Kethees
Joong Do Chiang Adam Stucci
Johannes Aman Pohjola Ronald Chiang
Miki Tanaka Gernot Heiser

Previous contributors:

Hira Taqdees Syeda Craig McLaughlin
Remy Seassau Krishnan Winter
Charles Lewis Ken Li

Pancake: A Language for Verified Systems Programming, Oct '24

Ben Nott

Junming Zhao
Tran Dao Le
Thomas Sewell

Rob Sison
Alessandro Legnani

Tsun Wang Sau
Thomas Liang

© Miki Tanaka 2024, CC BY 4.0

Pancake : sample code

.. export fun handle irq() {
Looks similar to C? var got char = 0;
got char = getchar();

if (got_char == -1) {
Pancake aims to be instantly ; gﬂtgr? -1;

familiar to C programmers

6 Pancake: A Language for Verified Systems Programming, Oct '24

while true {

}

var buffer addr = @base + 544;
var dequeue ret = 0;
// 0: dequeue avail rx

dequeue_ret = serial dequeue avail(0, buffer_addr);

if (dequeue ret !'= 0) {
// dequeue avail ring is empty
return -1;

}

var enqueue ret = 0;

// 0: enqueue used rx

enqueue_ret = serial enqueue used(0, got char, buffer_addr);

if (enqueue ret '= 0) {
return -1;

}

© Miki Tanaka 2024, CC BY 4.0

=)
=
3
:
A

UNSW

SYDNEY

Pancake

No types!
- Everything is a machine word

Simpler semantics!

- Complete formal semantics fits in a few
hundred lines of HOL4
- Almost nothing is undefined behaviour

With a verified compiler!
- Semantic equality from AST to ISA levels
- Using part of CakeML

Pancake: A Language for Verified Systems Programming, Oct '24

If you are verifying your code
anyway, types don’t seem to
help much actually

Simplifying design decisions:

- No dynamic allocation

- Single-threaded only

- No pointers to stack variables
- No side effects in expressions

vvvvvv

CakeML

Pancake is an offspring of CakeML.

CakeML is an impure functional programming language
similar to Standard ML

fun exists f xs = The machine code
case xs of [] => False generated at the bottom
| x::xs => f x orelse exists f xs has the same observable
events as the source AST

...with

- optimising compiler & bootstrapped binary
- verified from AST down to the ISA level

- developed on theorem prover HOL4

Pancake: A Language for Verified Systems Programming, Oct '24 © Miki Tanaka 2024, TT BY 4.0 UH‘?’;W

Compiling into CakeML A LA

This is used for HOL (synthesis)

bootstrapping [ICFP'12] ﬁ
the binary compiler

PureCake [PLDI'23]

Kalas [ITP’22]

4 Pancake [PLOS’23]\

Pancake compiles into wordLang,
halfway through the compiler
K(Cakel\/lL is too high level)

/

Pancake: A Language for Verified Systems Programming, Oct '24

10

Compiling into CakeML

End-to-end correctness is proved for Pancake compiler

wordLang:

after GC is introduced, where everything’s a word,
and almost everything is unmanaged except the stack

No GC for Pancake

We extended Pancake with

shared memory feature
(but not for CakeML)

Pancake: A Language for Verified Systems Programming, Oct '24

Jommmm Pancake passes -—~~
/ \

Parse concrete
syntax

Call optimisation

Replace loops
\ with tail calls
\

\.

Half a verified compiler for free!
(no need to verify register
allocation, instruction selection,
etc.)

/ . \
Transformations Languages

(Pancake AST

Flatten structs < Py

Normalise program

Shrink cutsets and expressions
delete unused <: occur only on
assignments

Languages
CasHsyia) —
CaleMLAST) 2

lan
wwwwww

Pancake syntax

CreplLang:

imperative

language
without structs

<

LoopLang:

RHS of
assignment

< statements

WordLang:
imperative
language with
machine words,
memory and
a GC primitive

StackLang:
imperative
language

with array-like
stack and
optional GC

LabLang:
assembly lang.
ARMv6

\
\

© Miki Tanaka 2024, CCBY 4.0

CakeML passes

VUV U VWU UV YU YUY

Simplify program

; Co
.o \ language b
S \ Re
. N
N \
\
\
\
\

> Select target instructions
> Perform SSA-like renaming
D Force two-reg code (if req.),
> Remove deadcode
D Allocate register names
D Concretise stack

D Introduce (raw) calls past
function preambles

> Implement GC primitive

> Turn stack accesses into
memory acceses

> Rename registers to matchi
arch registers/conventions

> Flatten code
> Delete no-ops (Tick, Skip)

Encode program as
concrete machine code

Silver ISA

Compiling into CakeML

Bootstrapped binary for Pancake is available
(as part of CakeML binary)

./cake --pancake

Pancake compiler is defined as a HOL
function. Pancake binary is obtained
via CakeML by the synthesis tool and
in-logic compilation.

https://cakeml.org/

11 Pancake: A Language for Verified Systems Programming, Oct '24

\
\,

Transformations

Pancake syntax
Parse concrete <
syntax
4 Pancake AST

Flatten structs (

Normalise program

Call optimisation <
Shrink cutsets and

delete unused
assignments

Replace loops
with tail calls (

b —
\‘\ .
S
N
N
N
N

N

© Miki Tanaka 2024, CCBY 4.0

CaeLaynte) —, o,

o Pancake passes -—~~
\

Languages

CreplLang:
imperative
language
without structs

N ———r

LoopLang:
expressions
occur only on
RHS of
assignment
statements

~

WordLang:
imperative

language

stack and

language with

machine words, | == Force two-reg code (f req.)
memory and
a GC primitive) Remove deadcode

StackLang:
imperative

with array-like

optional GC > Rename registers to match

|
\

CakeML passes
Languages Transformations

CakeML AST

FiatLang:

language
without

high-level
features

ClosLang
last language

closures

AVAVAVAVAVAVAVAVAVAVAVAVAVAVAV,

B | 2> o
S e
>

DataLang: | > Red

) Simplify program \
> Select target instructions
> Perform SSA-like renaming

> Allocate register names
> Concretise stack

> Introduce (raw) calls past
function preambles

> Implement GC primitive

Turn stack accesses into
memory acceses

arch registers/conventions
> Flatten code
> Delete no-ops (Tick, Skip)

Encode program as
concrete machine code

®

UNSW

SYDNEY

Good progress in relatively

Pancake : performance @ . O

short time

But still noticeable overhead.

12

Reducing ffi calls
Better code generation

Further improvement
expected

Pancake: A Language for Verified Systems Programming, Oct '24

C vs. Pancake Ethernet Driver User Cycle (Maaxboard)

B Cdriverusercycle [Pancake driver usercycle @ overhead (vs.C)

4.00E+9 100.0
3.00E+9 75.0
2.00E+9 50.0
28.3
260 2455
1.00E+9 2 1de 132 3% 25.0

0.00E+0 0.0

10 20 50 100 200 300 400 500 600 700 800 900 1000

Requested Throughput (Mb/s)

© Miki Tanaka 2024, CC BY 4.0

UNSW

SYDNEY

13

Pancake : semantics

[ESOP’16]
« Used for compiler correctness proof (similar to CakeML)
 Deterministic

- Not great for non-determinism The “ ” carries a clock and an oracle:
« Finite structure - Divergence = as limit of (clock ->)
- Not great for divergence - Evaluation uses the oracle to model ffi

[Xia et al, POPL 20]
« Coinductive, captures interactions and continuations
- Direct representation of divergence
- No clock or oracle in the state*
« Semantic itree interacts with any oracle
« Soundness proved

Pancake: A Language for Verified Systems Programming, Oct '24 © Miki Tanaka 2024, CC BY 4.0 UNSW
A

vvvvvv

14

Pancake: driver verification

Translation
from Pancake to Viper

Functional big-step semantics , direct verification
Interaction tree semantics Hoare logic

Pancake: A Language for Verified Systems Programming, Oct '24

Target:
virtualiser
serial driver
ethernet driver

Decompilation
from Pancake to HOL

vvvvvv

15

Pancake

Thank you!

(Almost) all this stuff is open source and freely available here:
https://code.cakeml.org

Read more at:
https://cakeml.org/pancake

Hang out with us on Discord:
https://discord.gg/a8UUs6Cebm

Pancake: A Language for Verified Systems Programming, Oct '24

© Miki Tanaka 2024, CC BY 4.0
o]

vvvvvv

