JProofcroflt_]

seL4® Multikernel Roadmap
and Concurrency Verification

Corey Lewis @ Proofcraft

Corey Lewis | sel4 summit 2024, Sydney, Australia

The world’'s most highly assured operating system kernel

Corey Lewis | sel4 summit 2024, Sydney, Australia

The world’'s most highly assured operating system kernel

Corey Lewis | sel4 summit 2024, Sydney, Australia

The world’'s most highly assured operating system kernel

non-critical,
untrusted

void kernel _call () { ‘/eriﬁed

/ —

TIPVPPTTI
Corey Lewis | sel4 summit 2024, Sydney, Australia

What do we want?

non-critical,
untrusted

hardware

'i'i'iFi'iFiFi'iFi'iPiFi'/
Corey Lewis | sel4 summit 2024, Sydney, Australia

What do we want?

Better performance,
by using more cores

non-critical,
untrusted

i ———

Corey Lewis | sel4 summit 2024, Sydney, Australia

What do we want?

4)
Better performance,
by using more cores)
é)
Still high assurance
\. J
non-critical,
untrusted
verified

i ———

Corey Lewis | sel4 summit 2024, Sydney, Australia

What do we want?

4 N 4
Better performance,
re) Concurrency
by using more cores
§ y §
4 N 4
Still high assurance) Formal Verification
g y g

non-critical,
untrusted

verified

i ———

Corey Lewis | sel4 summit 2024, Sydney, Australia

What do we want?

4 N 4 N

Better performance,

:) ncurren
by using more cores Concurrency
y g y

, N y N Very hard!

Still high assurance) Formal Verification
\, J \ J

non-critical,
untrusted

verified

i ———

Corey Lewis | sel4 summit 2024, Sydney, Australia

What do we want?

4 N 4 N

Better performance,

:) ncurren
by using more cores Concurrency
y g y

, N y N Very hard!

Still high assurance) Formal Verification
\, J \ J

Goal:

Allow use of multiple cores as soon as possible,
with incrementally stronger and stronger assurance

non-critical,
untrusted

verified

i ———

Corey Lewis | sel4 summit 2024, Sydney, Australia

Overview

@

oal:

Allow use of multiple cores as soon as possible,
With incrementally stronger and stronger assurance

What's hard?
What have we got so far?

Nondeterministic
State Monad
with

interference

Ato y
C-to-Isabelle Parser COMPLX gef)
C program — (121X specification seil

T =)

void kernel_call () {...}

kernel_call_body = ...

Corey Lewis |

selL4 summit 2024, Sydney, Australia

r

Towards a verified static
Multikernel selL.4

6 sela,

1

/

Overview

Goal:
Allow use of multiple cores as soon as possible,
With incrementally stronger and stronger assurance

What's hard?
What have we got so far?

Rely-Guarantee

kernel_call A= ...

Nondeterministic
State Monad
with

Concurrent
i Refinement Isabelle
interference

Concurrent
Refinement Isabelle

C-to-Isabelle Parser
C program — (1171 specification

T =)

void kernel_call () {...} kernel_call_body = ...

Corey Lewis | sel4 summit 2024, Sydney, Australia

What’s hard?

[Concurrency]
[Formal Verification]

There exist approaches for concurrency verification
that work for small / self-contained algorithms

[Very hard) Isn’'t that solved?

But;

Corey Lewis | sel4 summit 2024, Sydney, Australia

LN

What’s hard?

[Concurrency]
[Formal Verification]

There exist approaches for concurrency verification
that work for small / self-contained algorithms

[Very hard) Isn’'t that solved?

But;

sel 4 is neither small nor high-level nor modular
(because it's a microkernel and it is fast)

Corey Lewis | sel4 summit 2024, Sydney, Australia

LN

What’s hard?

Plus:;

sel4's existing verification framework is complex
(because it's doing formal proof of low-level complex code)

Corey Lewis | sel4 summit 2024, Sydney, Australia

LN

What’s hard?

Plus:

sel4's existing verification framework is complex
(because it's doing formal proof of low-level complex code)

e >1million lines of proof
— Developed over 15 years

' e Three levels of specifications
. — Two very different specification languages
' — Needs to capture a lot of detail

e Many different configurations
— Multiple architectures, multiple features, MCS

Corey Lewis | sel4 summit 2024, Sydney, Australia

What’s hard?

Plus:

sel4's existing verification framework is complex
(because it's doing formal proof of low-level complex code)

e >1million lines of proof
— Developed over 15 years

' e Three levels of specifications
. — Two very different specification languages
‘ — Needs to capture a lot of detail

e Many different configurations
— Multiple architectures, multiple features, MCS

We want to maximise reuse of existing proofs

Corey Lewis | sel4 summit 2024, Sydney, Australia

The unicore situation

non-critical,
untrusted

verified

hardware

Corey Lewis | sel4 summit 2024, Sydney, Australia

10

The unicore situation

Verified = the C code is correct (w.r.t its specification)
(+security, binary, etc. Ignored here for simplicity)

non-critical,
untrusted

verified

hardware

Corey Lewis | sel4 summit 2024, Sydney, Australia

10

The unicore situation

Verified = the C code is correct (w.r.t its specification)
(+security, binary, etc. Ignored here for simplicity)

User event
User

' (syscall/interrupt)

Kernel
transition

non-critical, Assumed
untrusted atomic

verified

hardware

Corey Lewis | sel4 summit 2024, Sydney, Australia

10

The unicore situation

Verified = the C code is correct (w.r.t its specification)
(+security, binary, etc. Ignored here for simplicity)

~10,000 LOC
>500 functions

User
transition

void kernel_call () { _

Corey Lewis | sel4 summit 2024, Sydney, Australia

User event
(syscall/interrupt)

,,;;//'

Kernel
transition

Assumed
atomic

11

The unicore situation

Verified = the C code is correct (w.r.t its specification)
(+security, binary, etc. Ignored here for simplicity)

~10,000 LOC
>500 functions User event
User (syscall/interrupt)
N Functional Correctness transition
;
\ Specification
> ;//
Kernel
I transition
Assumed
atomic

void kernel_call () { _

Corey Lewis | sel4 summit 2024, Sydney, Australia

11

The multicore situation

~10,000 LOC
>500 functions

void kernel _call () {

Functional Correctness

A — —

Corey Lewis | sel4 summit 2024, Sydney, Australia

User event

User (syscall/interrupt)

transition

—

Kernel
transition

12

The multicore situation

User event User event User event

User (syscall/interrupt) User (syscall/interrupt) User (syscall/interrupt)
transition transition transition

Kernel Kernel Kernel
transition transition transition

A — —

Corey Lewis | sel4 summit 2024, Sydney, Australia

13

The multicore situation

User event User event User event
(syscall/interrupt)

User (syscall/interrupt) User (syscall/interrupt) User
transition transition transition

Kernel Kernel Kernel
transition transition transition

Introduces three types of concurrency

Corey Lewis | sel4 summit 2024, Sydney, Australia

The multicore situation

User event User event

User (syscall/interrupt) User (syscall/interrupt)
transition transition

User event
(syscall/interrupt)

User
transition

Kernel Kernel
transition transition

Introduces three types of concurrency
1. User and User
— Part of overall system design
— Out of scope of kernel verification

Kernel
transition

— Must reason about this for whole-system proofs

Corey Lewis | sel4 summit 2024, Sydney, Australia

15

The multicore situation

User event User event User event
(syscall/interrupt)

User (syscall/interrupt) User (syscall/interrupt) User
transition transition transition

Kernel Kernel Kernel
transition transition transition

Introduces three types of concurrency
2. User and Kernel
— Must prove that the kernel does not depend on
what the user has access to

Corey Lewis | sel4 summit 2024, Sydney, Australia

16

The multicore situation
User event User event User event
User (syscall/interrupt) User (syscall/interrupt) User (syscall/interrupt)
transition transition transition

Kernel Kernel Kernel

transition transition transition

Corey Lewis |

Introduces three types of concurrency
3. Kernel and Kernel
— Must prove that the kernel itself correctly handles
this
— SMP sel4 does this with locks, the static
multikernel uses separation of resources

selL4 summit 2024, Sydney, Australia

17

The multicore situation

User event User event User event
(syscall/interrupt)

User (syscall/interrupt) User (syscall/interrupt) User
transition transition transition

Kernel Kernel Kernel
transition transition transition
Assumed

atomic

Introduces three types of concurrency
3. Kernel and Kernel
— Must prove that the kernel itself correctly handles
this
— SMP sel4 does this with locks, the static
multikernel uses separation of resources

Corey Lewis | sel4 summit 2024, Sydney, Australia

17

The multicore situation

User event User event User event
(syscall/interrupt)

User (syscall/interrupt) User (syscall/interrupt) User
transition transition transition

Kernel Kernel Kernel
transition transition transition
Assumed

atomic

Introduces three types of concurrency
3. Kernel and Kernel
— Must prove that the kernel itself correctly handles
this
— SMP sel4 does this with locks, the static
multikernel uses separation of resources

Corey Lewis | sel4 summit 2024, Sydney, Australia

17

The multicore situation

User event User event User event
(syscall/interrupt)

User (syscall/interrupt) User (syscall/interrupt) User
transition transition transition

Kernel Kernel Kernel
transition transition transition
Assumed

atomic

Need a new model
and verification framework

Corey Lewis | sel4 summit 2024, Sydney, Australia

18

The multicore situation

User event User event User event
(syscall/interrupt)

User (syscall/interrupt) User (syscall/interrupt) User
transition transition transition

Kernel Kernel Kernel
transition transition transition
Assumed

atomic

Need a new model
and verification framework

We want to maximise reuse of existing sequential proofs
where concurrency is controlled

Corey Lewis | sel4 summit 2024, Sydney, Australia

18

The multicore situation

User event User event User event
(syscall/interrupt)

User (syscall/interrupt) User (syscall/interrupt) User
transition transition transition

Kernel Kernel Kernel
transition transition transition
Assumed

atomic

Need a new model
and verification framework

We want to maximise reuse of existing sequential proofs
where concurrency is controlled

We have developed a proof-of-concept framework
for concurrent reasoning for selL.4 with maximum reuse

Corey Lewis | sel4 summit 2024, Sydney, Australia

18

The existing sequential framework (for unicore)

N
I Isabelle
Design Specification h

I Isabelle
. CCode C Code Semantics

. J

Corey Lewis | sel4 summit 2024, Sydney, Australia

The existing sequential framework (for unicore)

kernel_call_ A= ... Hoare Logic

State Monad

Refinement I Isabelle

Design Specification h

C-to-Isabelle Parser Isabelle
C program — SIMPL specification SIMPL

Cede] =) C Code Semantics
void kernel_call () {...} kernel _call_body = ...

Corey Lewis | sel4 summit 2024, Sydney, Australia

20

Proof-of-concept concurrent framework

kernel _call A= ...

State Monad

: Concurrent
, with Refinement Isabelle
interference

Design Specification h

Concurrent el
Refinement Isabelle
Adjusted C Code Semantics

C-to-Isabelle Parser Atomicity _
C program — COMPLX specification COM'DLX Refinement sabelle

.~ CCode -} C Code Semantics

void kernel_call () {...} kernel _call_body = ...

Corey Lewis | sel4 summit 2024, Sydney, Australia

Re/y—Guarantee

21

Small dive: interference monad
(to maximize reuse)

Rely-G t
kernel call A= ... ey uarantee

State Monad

: Concurrent
with Refinement I Isabelle

interference

Design Specification h
Concurrent I
Refinement kel
Adjusted C Code Semantics

C-to-Isabelle Parser Atomicity _
C program — COMPLX specification COM'DLX Refinement sabelle

.~ CCode -} C Code Semantics

void kernel_call () {...} kernel _call_body = ...

Corey Lewis | sel4 summit 2024, Sydney, Australia

22

Small dive:

Sequential: Nondeterministic State Monad

state — (result, state) set

Corey Lewis | sel4 summit 2024, Sydney, Australia

LN

23

state — (result, state) set

"do_fault transfer badge sender receiver buf = do
fault < thread get tcb fault sender;
f « (case fault of
Some f = return f
| None = fail);

(label, msg) < make fault msg f sender;

sent «— set _mrs receiver buf msg;

set message info receiver $ MI sent 0 0 label;

as_user receiver $ setRegister badge register badge
od"

Corey Lewis | sel4 summit 2024, Sydney, Australia

23

state — (result, state) set

"do_fault transfer badge sender receiver buf = do
fault < thread get tcb fault sender;
f « (case fault of
Some f = return f
| None = fail);

(label, msg) <— make fault msg f sender;

sent «— set _mrs receiver buf msg;

set _message 1nfo receiver $ sent abel;

as_user receiver $ setRegister badge register badge
od"

Corey Lewis | sel4 summit 2024, Sydney, Australia

23

Corey Lewis

"do_fault transfer badge sender receiver buf = do
fault < thread get tcb fault sender;
f « (case fault of
Some f = return f
| None = fail);

(label, msg) < make fault msg f sender;

sent «— set _mrs receiver buf msg;

set message info receiver $ MI sent 0 0 label;

as_user receiver $ setRegister badge register badge
od"

selL4 summit 2024, Sydney, Australia

24

Corey Lewis

‘do_fault transfer badge sender receiver buf = do
fault < thread get tcb fault sender;
f « (case fault of
Some f = return f
| None = fail);

(label, msg) < make fault msg f sender;

sent «— set _mrs receiver buf msg;

set message info receiver $ MI sent 0 0 label;

as_user receiver $ setRegister badge register badge
od"

selL4 summit 2024, Sydney, Australia

24

‘do_fault transfer badge sender receiver buf = do
fault < thread get tcb fault sender;
f « (case fault of
Some f = return f
| None = fail);

(labe i g al] f sender;
sent
set message 1 ' sent 0 0 label;

as_user receiver $ setRegister badge register badge

od"

Corey Lewis | sel4 summit 2024, Sydney, Australia

24

‘do_fault transfer badge sender receiver buf = do
fault < thread get tcb fault sender;
f « (case fault of
Some f = return f
| None = fail);

(labe i g al] f sender;
sent
set message 1 ' sent 0 0 label;

as_user receiver $ setRegister badge register badge

od"

Corey Lewis | sel4 summit 2024, Sydney, Australia

24

Limited interference

=

Model of code with limited
interference points (%)

Corey Lewis | sel4 summit 2024, Sydney, Australia

|

2 o it b g g b 2B b o 2B b b g

Refinement shows
that assuming
limited interference
IS safe

Model of code
with full interference

25

Small dive:

Concurrent: Interference Trace Monad

Corey Lewis | sel4 summit 2024, Sydney, Australia

LN

26

state — (trace, (result, state)) set

"do_fault_transfer badge sender receiver buf = do
fault < thread get tcb fault sender;
f — (case fault of
Some f = return f
| None = fail);
(label, msg) — make fault msg f sender;

receiver buf msg;
receiver $ MI sent 0 0 label;

as_user receliver $ setRegister badge register badge
od"

Corey Lewis | sel4 summit 2024, Sydney, Australia

26

Proof-of-concept concurrent framework

C-to-Isabelle Parser

Rely-G t
kernel call A= ... ey uarantee

State Monad

: Concurrent
, with Refinement Isabelle
interference
Design Specification h
Concurrent el
Refinement Isabelle
[~

Adjusted C Code Semantics

C SMPLX Atomicity _—
sapelle
C program — COMPLX specification ~cv, Refinement

.~ CCode -} C Code Semantics

void kernel _call () {...}

kernel _call_body = ...

Corey Lewis | sel4 summit 2024, Sydney, Australia

27

Proof-of-concept concurrent framework

kernel _call A= ...

State Monad

: Concurrent
, with Refinement Isabelle
interference

Design Specification h

Concurrent el
Refinement Isabelle
Adjusted C Code Semantics

C-to-Isabelle Parser Atomicity _
C program — COMPLX specification COM'DLX Refinement sabelle

.~ CCode -} C Code Semantics

void kernel_call () {...} kernel _call_body = ...

Corey Lewis | sel4 summit 2024, Sydney, Australia

Re/y—Guarantee

28

Proof-of-concept concurrent framework

/ \e/y—Guarantee

pare-togic-

riants

Now how do we apply this to update all of the selL4 proofs?

riants

Adjusted C Code Semantics

Atomicity

C-to-Isabelle Parser : el
C program — COMPLX specification CSOlMu "DDL!X Refinement I sabelle

| CCade C Code Semantics

void kernel_call () {...} kernel _call_body = ...

Corey Lewis | sel4 summit 2024, Sydney, Australia

28

Overview

Corey Lewis |

@

oal:

Allow use of multiple cores as soon as possible,
With incrementally stronger and stronger assurance

selL4 summit 2024, Sydney, Australia

r

Towards a verified static
Multikernel selL.4

6 sela,

N -

1

29

Progressive roadmap

Single core

Corey Lewis | sel4 summit 2024, Sydney, Australia

Multicore (SMP)

v

@=14)

N 7
memorv[l

A ——

4)

Need full concurrency
on Day 1

No assurance until

_ done Y

30

Progressive roadmap: via static multikernel

Single core Static Multikernel Multicore (SMP)
v v/ v/ v v
©usld oxld) (@:cld) (@sela ©seld
N N N N ~—

— el R memory [l
./././ A S L—

One sel 4 per core

Progressively building
stronger assurance

from Day 1
G v J

Corey Lewis | sel4 summit 2024, Sydney, Australia

31

Static multikernel configuration of sel 4

® Each core runs a copy of the kernel
— Each copy has separate resources and data structures

— No kernel-kernel interactions

e User code communicates via shared memory and inter-processor

interrupts
— sel4 APl remains nearly identical

® Static partition of memory simplifies verification
— Still provides increased utility and performance

/ / /
o4 (@eld) (@sel4

N . N7 N7

N EC B
a— — —

Corey Lewis | sel4 summit 2024, Sydney, Australia

32

Multikernel sel4 verification roadmap

Assurance

Corey Lewis | sel4 summit 2024, Sydney, Australia

33

Multikernel sel4 verification roadmap

Verify
sequentially

e \Verify code changes sequentially
— Add IPI API

Sequentially correct

Assurance

Corey Lewis | sel4 summit 2024, Sydney, Australia

34

Multikernel sel4 verification roadmap

V Verify
sequentially

e \Verify code changes sequentially
— Add IPI API

Sequentially correct

Assurance

Corey Lewis | sel4 summit 2024, Sydney, Australia

34

Multikernel sel4 verification roadmap

V Verify

sequentially

List
obligations

e Identify required proof obligations
— e.g. separation of resources between kernel instances

Sequentially correct
Separation of resources maintained
Isolation of kernels on different cores

Assurance

Corey Lewis | sel4 summit 2024, Sydney, Australia

35

Multikernel sel4 verification roadmap

V Verify
sequentially

List Prove
obligations obligations

® Prove required obligations in isolation
— Proofs would still be sequential

Sequentially correct
Separation of resources maintained
Isolation of kernels on different cores

Assurance

Corey Lewis | sel4 summit 2024, Sydney, Australia

36

Multikernel sel4 verification roadmap

V Verify

sequentially

List
obligations

Prove
obligations

® Parametrise specifications to allow multiple instances of the kernel
— Parameters such as physical memory location

Parametrise
specifications

Sequentially correct
Separation of resources maintained
Isolation of kernels on different cores

Assurance

Corey Lewis | sel4 summit 2024, Sydney, Australia

37

Multikernel sel4 verification roadmap

V Verify

sequentially

List Prove
obligations obligations

. Concurrent
Pa rémetrlse automaton
specifications

e Add coarse-grained concurrency to the automaton
— Transitions are still atomic, some obligations will be validated

Sequentially correct
Separation of resources maintained More proof obligations?
Isolation of kernels on different cores

Assurance

Corey Lewis | sel4 summit 2024, Sydney, Australia

38

Multikernel sel4 verification roadmap
V Verify

Complete
framework
sequentially

List Prove
obligations obligations
Concurrent
Parametrise automaton
specifications

® Exercise and complete concurrency framework
— Monad rulesets, haskell translator, atomicity refinement, C-Parser, ...

Sequentially correct
Separation of resources maintained More proof obligations?
Isolation of kernels on different cores

Assurance

Corey Lewis | sel4 summit 2024, Sydney, Australia

39

Multikernel sel4 verification roadmap
V Verify

Complete
framework
sequentially

List Prove
obligations obligations
Concurrent
Parametrise automaton
specifications

® Prove functional correctness for multikernel
— This is where full concurrency is introduced

Prove

multikernel FC

Sequentially correct
Separation of resources maintained More proof obligations?
Isolation of kernels on different cores

Assurance

Corey Lewis | sel4 summit 2024, Sydney, Australia

40

Multikernel sel4 verification roadmap
V Verify

Complete
framework
sequentially

List Prove
obligations obligations
Concurrent
Parametrise automaton
specifications

® Prove functional correctness for multikernel
— This is where full concurrency is introduced

Prove

multikernel FC

Sequentially correct
Separation of resources maintained More proof obligations?

Isolation of kernels on different cores Functional correctness!

Assurance

Corey Lewis | sel4 summit 2024, Sydney, Australia

41

What do we want?

Goal:
Allow use of multiple cores as soon as possible,
with incrementally stronger and stronger assurance

non-critical,
untrusted

verified

l — —

Assurance

Corey Lewis | sel4 summit 2024, Sydney, Australia

Thank you

Proofcraft
Corey Lewis
Principal Proof Engineer

