
Kry10 Limited

Matt Brecknell

Verifying user-space systems

seL4 Summit — October 2024 — Sydney

Matt Brecknell 22024-10-16Verifying user-space systems

Foundational verification of deep properties of dynamic systems

comprised of trusted and untrusted components

Foundational verification Machine-checked proofs in mathematical logic

Deep properties Functional correctness, integrity

Dynamic systems Concurrency, interaction between components

Trusted components Properties depend on component behaviour

Untrusted components Robust in the presence of faulty or malicious code

Wanted

Matt Brecknell 32024-10-16Verifying user-space systems

To reason about systems of interacting components,

we must exploit structure

‣ Separation of concerns

‣ Modularity

‣ Abstraction

‣ Compositional reasoning

Automate within structure

Matt Brecknell 42024-10-16Verifying user-space systems

Example system — ICS gateway

2-port NIC

Driver

Untrusted

network

Secure

network

Secure

subsystem

Insecure

subsystem

Crypto, auth

Filter, monitor

Traffic between the secure subsystem and the untrusted
network must be encrypted, authenticated, filtered and
monitored

Informal requirement Formal specification (process model)

SEC INSF/M C/A

Matt Brecknell 52024-10-16Verifying user-space systems

Example system — sDDF

Rx data

Tx data

Client
Tx Virt

Rx Virt

Network

device

Rx V MD

Tx V MD Tx V MD

Rx V MD
Driver

Dev Ctrl

Dev MD

Source: https://trustworthy.systems/projects/drivers/sddf-design.pdf

Packets should only be delivered to the intended
network address (Tx) or client (Rx)

Informal requirement High-level specification (process model)

Client Client

Every data region has a unique owner

Internal invariant

Matt Brecknell 62024-10-16Verifying user-space systems

First steps

1. Literature review

2. Experiments

Iris 2.0 (2016) Iris 3.0 (2017)

Owicki-Gries (1976)

CSL (2004)Rely-Guarantee (1983)

SAGL (2007)
RGSep (2007)

Deny-Guarantee (2009)

CAP (2010)

Liang-Feng (2013)

LRG (2009)

SCSL (2013)HOCAP (2013)

iCAP (2014)

Iris (2015)

CaReSL (2013)

FCSL (2014)

TaDA (2014)

CoLoSL (2015)

Gotsman-al (2007)

HLRG (2010)

Bornat-al (2005)

RGSim (2012)

GPS (2014)
Total-TaDA (2016)

FTCSL (2015)

Jacobs-Piessens (2011)

RSL (2013)

LiLi (2016)

Bell-al (2010)
Hobor-al (2008)

FSL (2016)

Hobor-Gherghina
(2011)

FSL++
(2017)

Disel (2019)

Aneris (2020)

Concurrent RGRefs (2017)

iGPS (2017)

Source: https://ilyasergey.net/assets/other/CSL-Family-Tree.pdf

Matt Brecknell 82024-10-16Verifying user-space systems

1969: Hoare logic

An Axiomatic Basis for
Computer Programming

C. A. R. HOARE
The Queen's University of Belfast,* Northern Ireland

In this paper an attempt is made to explore the logical founda-
tions of computer programming by use of techniques which
were first applied in the study of geometry and have later
been extended to other branches of mathematics. This in-
volves the elucidation of sets of axioms and rules of inference
which can be used in proofs of the properties of computer
programs. Examples are given of such axioms and rules, and
a formal proof of a simple theorem is displayed. Finally, it is
argued that important advantages, both theoretical and prac-
tical, may follow f rom a pursuance of these topics.

KEY WORDS AND PHRASES: axiomatic method, theory of programming'
proofs of programs, formal language definition, programming language
design, machine-independent programming, program documentation
CR CATEGORY: 4.0, 4.21,4.22, 5.20, 5.21,5.23, 5.24

1. Introduction

Computer programming is an exact science in that all
the properties of a program and all the consequences of
executing it in any given environment can, in principle,
be found out from the text of the program itself by means
of purely deductive reasoning. Deductive reasoning in-
volves the application of valid rules of inference to sets of
valid axioms. I t is therefore desirable and interesting to
elucidate the axioms and rules of inference which underlie
our reasoning about computer programs. The exact choice
of axioms will to some extent depend on the choice of
programming language. For illustrative purposes, this
paper is confined to a very simple language, which is effec-
tively a subset of all eurrent procedure-oriented languages.

2. Computer Arithmetic
The first requirement in valid reasoning about a pro-

gram is to know the properties of the elementary operations
which it invokes, for example, addition and multiplication
of integers. Unfortunately, in several respects computer
arithmetic is not the same as the arithmetic familiar to
mathematicians, and it is necessary to exercise some care
in selecting an appropriate set of axioms. For example, the
axioms displayed in Table I are rather a small selection
of axioms relevant to integers. From this incomplete set

* Depurtment of Computer Science

of axioms it is possible to deduce such simple theorems as:

x = x + y X O

y < r ~ r + y X q = (r - y) + y X (1 + q)

The proof of the second of these is:

A5 (r - - y) + y X (l + q)

= (r - - y) + (y X l + y X q)

A9 = (r - - y) + (y + y X q)

A3 = ((r - - y) + y) + y X q

A6 = r + y X q p rov idedy < r

The axioms A1 to A9 are, of course, true of the tradi-
tional infinite set of integers in mathematics. However,
they are also true of the finite sets of "integers" which are
manipulated by computers provided that they are con-
fined to nonnegative numbers. Their t ru th is independent
of the size of the set; furthermore, it is largely independent
of the choice of technique applied in the event of "over-
flow"; for example:

(1) Strict interpretation: the result of an overflowing
operation does not exist; when overflow occurs, the offend-
ing program never completes its operation. Note that in
this case, the equalities of A1 to A9 are strict, in the sense
that both sides exist or fail to exist together.

(2) Firm boundary: the result of an overflowing opera-
tion is taken as the maximum value represented.

(3) Modulo arithmetic: the result of an overflowing
operation is computed modulo the size of the set of integers
represented.

These three techniques are illustrated in Table I I by
addition and multiplication tables for a trivially small
model in which 0, 1, 2, and 3 are the only integers repre-
sented.

I t is interesting to note that the different systems satisfy-
ing axioms A1 to A9 may be rigorously distinguished from
each other by choosing a particular one of a set of mutually
exclusive supplementary axioms. For example, infinite
arithmetic satisfies the axiom:

A10z ~ 3 x V y (y < x),

where all finite arithmetics satisfy:

A10~ Vx (x < max)

where "max" denotes the largest integer represented.
Similarly, the three treatments of overflow may be

distinguished by a choice of one of the following aMoms
relating to the value of max + 1:

A l l s ~ 3 x (x = max + 1) (strict interpretation)

A l l , max + 1 = max (firm boundary)

AllM max + 1 = 0 (modulo arithmetic)

Having selected one of these axioms, it is possible to
use it in deducing the properties of programs; however,

576 Communications of the ACM Volume 12 / Number 10 / October, 1969

{ P } c { Q }

P Precondition
Q Postcondition

—
— }Predicates on global state

c Program fragment—

Specification “triple”

IF c starts executing in a state satisfying P
THEN the final state satisfies Q

Matt Brecknell 92024-10-16Verifying user-space systems

1969: Hoare logic

{ P } c1 { Q } { Q } c2 { R }
{ P } c1 ; c2 { R }

Deduction rule for sequenced programs

{ λh. h[l] = v }

 l ← !l + 1

{ λh. h[l] = v + 1 }

Local, but might not compose

{ λh. Q (h[l := h[l]]) }

 l ← !l + 1

{ λh. Q h }

Composable, but not local

{ P } c { Q }
Specification “triple”

P Precondition
Q Postcondition

—
— }Predicates on global state

c Program fragment—

IF c starts executing in a state satisfying P
THEN the final state satisfies Q

Matt Brecknell 102024-10-16Verifying user-space systems

2002: Separation logic
Separation Logic: A Logic for Shared Mutable Data Structures

John C. Reynolds∗

Computer Science Department
Carnegie Mellon University
john.reynolds@cs.cmu.edu

Abstract

In joint work with Peter O’Hearn and others, based on
early ideas of Burstall, we have developed an extension of
Hoare logic that permits reasoning about low-level impera-
tive programs that use shared mutable data structure.

The simple imperative programming language is ex-
tended with commands (not expressions) for accessing and
modifying shared structures, and for explicit allocation and
deallocation of storage. Assertions are extended by intro-
ducing a “separating conjunction” that asserts that its sub-
formulas hold for disjoint parts of the heap, and a closely
related “separating implication”. Coupled with the induc-
tive definition of predicates on abstract data structures, this
extension permits the concise and flexible description of
structures with controlled sharing.

In this paper, we will survey the current development of
this program logic, including extensions that permit unre-
stricted address arithmetic, dynamically allocated arrays,
and recursive procedures. We will also discuss promising
future directions.

1. Introduction

The use of shared mutable data structures, i.e., of struc-
tures where an updatable field can be referenced from more
than one point, is widespread in areas as diverse as systems
programming and artificial intelligence. Approaches to rea-
soning about this technique have been studied for three
decades, but the result has been methods that suffer from ei-
ther limited applicability or extreme complexity, and scale
poorly to programs of even moderate size. (A partial bibli-
ography is given in Reference [28].)

The problem faced by these approaches is that the cor-
rectness of a program that mutates data structures usually

∗Portions of the author’s own research described in this survey were
supported by National Science Foundation Grant CCR-9804014, and by
the Basic Research in Computer Science (http://www.brics.dk/)
Centre of the Danish National Research Foundation.

depends upon complex restrictions on the sharing in these
structures. To illustrate this problem, and our approach to
its solution, consider a simple example. The following pro-
gram performs an in-place reversal of a list:

j := nil ; while i != nil do

(k := [i + 1] ; [i + 1] := j ; j := i ; i := k).

(Here the notation [e] denotes the contents of the storage at
address e.)

The invariant of this program must state that i and j are
lists representing two sequences α and β such that the re-
flection of the initial value α0 can be obtained by concate-
nating the reflection of α onto β:

∃α, β. list α i ∧ list β j ∧ α†
0 = α†·β,

where the predicate list α i is defined by induction on the
length of α:

list ε i
def= i = nil list(a·α) i

def= ∃j. i ↪→ a, j ∧ list α j

(and ↪→ can be read as “points to”).
Unfortunately, however, this is not enough, since the pro-

gram will malfunction if there is any sharing between the
lists i and j. To prohibit this we must extend the invariant to
assert that only nil is reachable from both i and j:

(∃α, β. list α i ∧ list β j ∧ α†
0 = α†·β)

∧ (∀k. reach(i, k) ∧ reach(j, k) ⇒ k = nil),
(1)

where

reach(i, j) def= ∃n ≥ 0. reachn(i, j)

reach0(i, j)
def= i = j

reachn+1(i, j)
def= ∃a, k. i ↪→ a, k ∧ reachn(k, j).

Even worse, suppose there is some other list x, repre-
senting a sequence γ, that is not supposed to be affected by

Separating conjunction

P ∗ Q

Satisfied by a resource if it can be partitioned so that

‣ P is satisfied by one part

‣ Q is satisfied by the other

Separating implication

Satisfied by a resource if adding any separate resource

satisfied by P gives a resources that satisfies Q

P Q∗

P*Q QP

QP ∗QP

Matt Brecknell

P ∗Q

112024-10-16Verifying user-space systems

2002: Separation logic

Separating conjunction

P ∗ Q

Satisfied by a resource if it can be partitioned so that

‣ P is satisfied by one part

‣ Q is satisfied by the other

Separating implication

Satisfied by a resource if adding any separate resource

satisfied by P gives a resources that satisfies Q

P Q∗
P Q

Heap resources

l ↦ v

l1 ↦ v1 l2 ↦ v2∗

Satisfied by a heap with

‣ distinct locations l1 and l2

‣ value v1 at location l1

‣ value v2 at location l2

Satisfied by a partial heap with

‣ value v at location l

P*Q QP

Matt Brecknell

{ P } c { Q }

122024-10-16Verifying user-space systems

2002: Separation logic

IF c starts executing in a state satisfying P
THEN ‣ c will not fail

‣ the final state satisfies Q

{ P } c { Q }
{ P * R } c { Q * R }

Frame rule

Matt Brecknell 132024-10-16Verifying user-space systems

2002: Separation logic

Representation predicate — singly-linked list

l1: l2: l3:1

l2

2

l3

3

nil

list :: Loc → [Val] -> Prop

list hd [] = (hd = nil)

list hd (x:xs) = ∃ next. hd ↦ [x,next] * list next xs

list l1 [1,2,3]

{ list l1 xs * list l2 ys }

 splice l1 l2

{ list l1 (xs ++ ys) }

{ list l1 xs * list l2 ys * list l3 zs }

 splice l2 l3 ; splice l1 l2

{ list l1 (xs ++ ys ++ zs) }

Matt Brecknell 142024-10-16Verifying user-space systems

2002: Separation logic

Representation predicate — singly-linked list

l1: l2: l3:1

l2

2

l3

3

nil

list :: Loc → [Val] -> Prop

list hd [] = (hd = nil)

list hd (x:xs) = ∃ next. hd ↦ [x,next] * list next xs

list l1 [1,2,3]

{ list l1 xs * list l2 ys }

 splice l1 l2

{ list l1 (xs ++ ys) }

{ list l1 xs * list l2 ys * list l3 zs }

 splice l2 l3 ;

{ list l1 xs * list l2 (ys ++ zs) }

 splice l1 l2

{ list l1 (xs ++ ys ++ zs) }

Matt Brecknell

Parallel composition rule

152024-10-16Verifying user-space systems

2004: Concurrent separation logic

{ P1 * P2 } c1 || c2 { Q1 * Q2 }
{ P1 } c1 { Q1 } { P2 } c2 { Q2 }

Resources, Concurrency and Local Reasoning

Peter W. O’Hearn

Queen Mary, University of London

Abstract. In this paper we show how a resource-oriented logic, sep-
aration logic, can be used to reason about the usage of resources in
concurrent programs.

1 Introduction

Resource has always been a central concern in concurrent programming. Often,
a number of processes share access to system resources such as memory, pro-
cessor time, or network bandwidth, and correct resource usage is essential for
the overall working of a system. In the 1960s and 1970s Dijkstra, Hoare and
Brinch Hansen attacked the problem of resource control in their basic works on
concurrent programming [8, 9, 11, 12, 1, 2]. In addition to the use of synchroniza-
tion mechanisms to provide protection from inconsistent use, they stressed the
importance of resource separation as a means of controlling the complexity of
process interactions and reducing the possibility of time-dependent errors. This
paper revisits their ideas using the formalism of separation logic [22].

Our initial motivation was actually rather simple-minded. Separation logic
extends Hoare’s logic to programs that manipulate data structures with embed-
ded pointers. The main primitive of the logic is its separating conjunction, which
allows local reasoning about the mutation of one portion of state, in a way that
automatically guarantees that other portions of the system’s state remain unaf-
fected [16]. Thus far separation logic has been applied to sequential code but,
because of the way it breaks state into chunks, it seemed as if the formalism
might be well suited to shared-variable concurrency, where one would like to
assign different portions of state to different processes.

Another motivation for this work comes from the perspective of general
resource-oriented logics such as linear logic [10] and BI [17]. Given the develop-
ment of these logics it might seem natural to try to apply them to the problem
of reasoning about resources in concurrent programs. This paper is one attempt
to do so – separation logic’s assertion language is an instance of BI – but it is
certainly not a final story. Several directions for further work will be discussed
at the end of the paper.

There are a number of approaches to reasoning about imperative concurrent
programs (e.g., [19, 21, 14]), but the ideas in an early paper of Hoare on concur-
rency, “Towards a Theory of Parallel Programming [11]” (henceforth, TTPP),
fit particularly well with the viewpoint of separation logic. The approach there
revolves around a concept of “spatial separation” as a way to organize think-
ing about concurrent processes, and to simplify reasoning. Based on compiler-

P. Gardner and N. Yoshida (Eds.): CONCUR 2004, LNCS 3170, pp. 49–67, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Critical region rule

{ P } with l do c { Q }
{ P * RIl } c { Q * RIl }

One-place buffer

try_take lock buf r =

 with lock do

 r ← !buf ; buf ← None

RIlock = (∃x. buf ↦ Some x) ∨ (buf ↦ None)

Matt Brecknell 162024-10-16Verifying user-space systems

1983: Rely guarantee

Tentative Steps Toward a Development
Method for Interfering Programs
C. B. JONES
Manchester University

Development methods for (sequential) programs that run in isolation have been studied elsewhere.
Programs that run in parallel can interfere with each other, either via shared storage or by sending
messages. Extensions to earlier development methods are proposed for the rigorous development of
interfering programs. In particular, extensions to the specification method based on postconditions
that are predicates of two states and the development methods of operation decomposition and data
refinement are proposed.
Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Programming;
D.2.4 [Software Engineering]: Program Verification; D.3.2 [Programming Languages]: Language
Classifications--Ada; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and
Reasoning about Programs
General Terms: Design, Languages, Verification
Additional Key Words and Phrases: Rely-conditions, guarantee-conditions, communicating sequential
processes

1. INTRODUCTION

A brief review of the history of a t tempts to formalize the development of
sequential (isolated) programs will set the context for the extensions we propose.
The first results to appear were concerned with correctness proofs for complete
programs and normally concentrated on trivial data s tructures such as natural
numbers (cf. [7, 14, 31]). Subsequent papers showed how the proof rules could be
used in a design process; in this way a proof could be used to justify the design
step before development of the final code took place (cf. [5, 13, 39]). The wider
application of such ideas became possible with the s tudy of abstract data types
and their refinement (cf. [12, 29]). The development method tha t evolved th rough
[21], [20], and [18] mirrors this development but uses postcondit ions tha t are
predicates of the initial and final states. This me thod is outlined in Section 2
below. The emphasis nowadays is more on a "rigorous me thod" tha t relies on the
underlying mathemat ica l ideas but in which these foundations are used mainly
as a guide to less formal "correctness arguments." The approach of employing
checklists of results {based on formal rules) as an integral par t of the development

Author's address: Department of Computer Science, Manchester University, Manchester M13 9PL,
England.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
© 1983 ACM 0164-0925/83/1000-0596 $00.75
ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983, Pages 596-619.

R, G ⊢ { P } c { Q }

P Precondition
Q Postcondition

—
— }Predicates on global state

c Program fragment—

Specification 5-tuple

R Rely
G Guarantee

—
— }Transition relations on global state

IF ‣ c starts executing in a state satisfying P
‣ every atomic step by another thread is in R

THEN ‣ the final state satisfies Q
‣ every atomic step by c in G

Matt Brecknell 172024-10-16Verifying user-space systems

Shopping list
Hoare SL RG CSL

Sequential ✔ ✔ ✔ ✔
Concurrency ✔ ✔
Fine-grained ✔
Data-local ✔ ✔
Thread-local ✔ ✔

Matt Brecknell 182024-10-16Verifying user-space systems

2007-2014: Hybrid logics

RGSep (Vafeiadis et al., 2007) ‣ Fine-grained thread-local and data-local reasoning

Deny-guarantee (Dodds et al., 2009) ‣ Dynamically-scoped concurrency

‣ Permissions as resources

‣ Data abstraction

‣ Protocols as transition systems

‣ Recursive predicates via step indexing (Appel et al., 2001)

CAP (Dinsdale-Young et al., 2010)
HOCAP (Svendsen et al., 2013)
iCAP (Svendsen et al., 2014) }
CaReSL (Turon et al., 2013) ‣ Contextual refinement

TaDA (da Rocho Pinto et al., 2014) ‣ “Time and data abstraction”

‣ Logically atomic triples

Matt Brecknell

Iris ‣ Modular, parametric, foundational

‣ Iris proof mode in Coq

(Jung et al., 2015, 2016)

(Krebbers et al., 2017, 2017)

192024-10-16Verifying user-space systems

2015-present: Iris

ReLoC (Frumin et al., 2018) ‣ Contextual refinement

Actris (Hinrichsen et al., 2020) ‣ Message-passing with session types

DimSum (Sammler et al., 2023) ‣ Process algebra

‣ Heterogeneous systems

OCP (Swasey et al., 2017)

Cerise (Georges et al., 2021)

‣ Object-capability patterns

‣ Robustness w.r.t. untrusted code

Matt Brecknell 202024-10-16Verifying user-space systems

Shopping list
Hoare SL RG CSL Hybrids Iris Iris++

Sequential ✔ ✔ ✔ ✔ ✔ ✔ ✔
Concurrency ✔ ✔ ✔ ✔ ✔
Fine-grained ✔ ✔ ✔ ✔
Data-local ✔ ✔ ✔ ✔ ✔
Thread-local ✔ ✔ ✔ ✔ ✔
Step indexing ✔ ✔ ✔
Data abstraction ✔ ✔ ✔
Refinement ✔ ✔ ✔
Logical atomicity ✔ ✔ ✔
Modular, extensible logic ✔ ✔
Maintained implementation ✔ ✔
Community ✔ ✔
Process algebra ✔
Object capabilities ✔

Matt Brecknell 212024-10-16Verifying user-space systems

The dilemma

Iris is a state-of-the-art framework, with an active community,

but it is implemented in the Coq prover,

while seL4 is specified and verified in Isabelle/HOL

1. Implement and maintain a framework in Isabelle/HOL

What features do we need?

Do their implementations port to classical logic?

2. Develop and maintain a duplicate seL4 specification in Iris

Can we mechanise the translation?

How will we argue that the translation is correct?

Matt Brecknell 222024-10-16Verifying user-space systems

Experiments

1. Prove functional correctness of a simple (sub)system in Iris

‣ sDDF network pipeline (driver, virtualiser, client)

‣ Contextual refinement between

‣ An abstract process model (packets are messages)

‣ A concurrent intermediate specification (packets are bytes in data regions)

‣ How to instantiate Iris?

Rx data

Tx data

Client
Tx Virt

Rx Virt

Network

device

Rx V MD

Tx V MD Tx V MD

Rx V MD
Driver

Dev Ctrl

Dev MD

Matt Brecknell 232024-10-16Verifying user-space systems

Experiments

1. Prove functional correctness of a simple (sub)system in Iris

‣ sDDF network pipeline (driver, virtualiser, client)

‣ Contextual refinement between

‣ An abstract process model (packets are messages)

‣ A concurrent intermediate specification (packets are bytes in data regions)

‣ How to instantiate Iris?

2. Investigate implementing a framework in Isabelle/HOL

3. Investigate transporting simple specifications between Isabelle/HOL and Iris

Generate Isabelle/HOL, or generate Iris?

Matt Brecknell 242024-10-16Verifying user-space systems

Conclusion

‣ Modern concurrency verification frameworks are capable and mature

‣ We need experiments to understand how to apply them to system-level verification

‣ And to seL4-based systems in particular

