
IOMMU solutions for seL4
(take ARM SMMUv3 for instance)

seL4 Summit 2023

KAN QIU kan.qiu@horizon.cc
LEI MAO lei.mao@horizon.cc

1

• Context

• Infrastructure

• Technical Challenges

• Summary

• Future Plans

Agenda

2

Context

DMA device which is capable of overwriting any device-addressable memory on the whole system has potential
security & safety problem.

IOMMU provides a virtual address space to DMA-capable devices, solving addressing issues and setting up
transparent scatter/gather operations.

To prevent violation of the isolation model, the driving force is virtualization at this point, and the widely used
IOMMU(in ARM case: SMMU) virtualization scheme in a Hypervisor is Stage-2 only or one-level stage.

3

Context

The VMM and other components maintain their own IO domains through the unified kernel interfaces that
systematically manages all SMMU hardware abstracts, and has the proven reliability.

4

Infrastructure

Exist SMMU Stage-2 Only scheme is simple enough:

5

Use case for
the native
user-space
components

Use case for
virtualization
components

Infrastructure

Although the IOMMU Stage-2 only scheme (the view of
SMMU Stage-2 is as same as the MMU's) is simple, and
seems enough at most of time for virtualization.

But in order to address physical memory fragmentation,
and to avoid bounce buffers, the preferred approach
seems to enable para-virtualization.
(There are legacy DMA IPs which can only access
24/32bit address)

6

Infrastructure

For a more flexible and finely controlled Stage-1, what firstly comes to mind is classic VIRTIO methodology.
The most important thing we need to do is interpreting requests from VIRTIO frontend into kernel system calls.

7

Infrastructure

We did following thing to enable SMMUv3 support in seL4
 first porting the SMMUv3 driver into the seL4 kernel
 modify Haskell scripts and RootServer to statically pre-generate and manage various SID/CB objects
 modify CAmkES scripts to configure and derive specified capabilities for components and virtual machines.

/*# Generate SMMUv3 capabilities #*/
/*- set sid_cap = alloc(name='sid_%d_%d' % (id, sid), type=seL4_ARMSID, smmu_id=id, sid=sid) -*/
/*- set cb_cap = alloc(name='cb_%d_%d' % (id, sid), type=seL4_ARMCB, smmu_id=id, cb=sid) -*/

vm0.smmu_sids = [
{"smmu_id":0, "sid":1},
{"smmu_id":0, "sid":2},
{"smmu_id":0, "sid":3},
];

CAmkES Template：

CAmkES Configuration：

8

9

I/F - Function Changes

decodeARMSIDControlInvo
cation

{ADD CMD}
ARMSIDGetGlobalerror
ARMSIDGetEventq
ARMSIDSkipCmdqError
ARMSIDClearGlobalerror
ARMSIDDisableSMMU
ARMSIDInitSMMU

decodeARMCBInvocation
{ADD CMD}
ARMCBAssignCDTable – stage1 CD Bind

I/F - Typedef Structure Changes

page_upper_directory_cap
{ADD MEMBER}
field capPUDSMMUID 4

block sid_cap

{ADD MEMBER};
field capDevID 4
{MODIFY BIT.LEN}
field capSID 12->32
padding 52->28

block cb_cap

{ADD MEMBER};
field capDevID 4
{MODIFY BIT.LEN}
field capBindSID 12->32
padding 40->16

Infrastructure

Technical Challenges

10

1. If we already distribute the region into one huge or several
large frames, meanwhile, we can not reuse it as normal pages for
the perspective of IO, and vice versa.

Q: To resolve the different view of granularity between
MMU and SMMU, how about creating a new type of IO-
mapping dedicated capability?

A: No, It looks heavy, complex and repetitive.

2. Do we need a complex VIRTIO-IOMMU backend for support different Guest
OS usage?
A: No, we’d better just choose simple and universal way AARCH64 can help

Technical Challenges

11

To address the problem, we can use the
scheme of Stage1 + Stage2, and the Stage1
construction for IO page tables has been
realized within VM.

VMM don’t own/configure the stage 1 context
descriptor.

The IOMMU API is extended to convey the
guest Stage1 configuration and the hook is
implemented in the Guest SMMUv3 driver.

Technical Challenges

12

Because the internal paging in two stages are
physical independent, this solution makes it
easy to enable both S1 and S2 stages.

The addition of Stage2 ensures isolation of
multiple virtual machines.

Use examples

13

Customers can choose above working modes for every master according to their own needs, and both in high-

assurance native components or non-critical VMs.

Summary

I. SMMU S1+S2 can be supported without new kernel object and cap.

II. This design can be applied to use all modes(schema) SMMUv3 supported.

III. With S1 supported, Linux native SMMU driver keeps original operation logic, so no need to use heavy

QEMU or VIRTIO-IOMMU backend driver.

14

Future Plans

• CAmkES

 Parse device tree for SMMU device nodes and DMA-Master nodes, and auto-generate corresponding SID

and CB capabilities, just like the generation of “IRQ Handler” capabilities.

• Do more verification in SMMUv3 builtin SoC Platform

 Currently develop and verified in FVP platform. Plan to test real app in our next Journey SoC

 Test PCIE devices which use SMMU

15

16

THANKS！

