
seL4 VMM on the
RISC-V Rocket
Chip

Robbie VanVossen

Michael Doran

• DornerWorks collaborates with
multiple customers in various
industries to utilize seL4 on real
world systems

• RISC-V is an attractive platform
for open-source solutions, such
as seL4

• Virtualization is a great way to
get the benefits of seL4 without
needing to write a lot of
components from scratch

• RISC-V is lagging behind some
other platforms for
virtualization support

• Software and hardware

• By not utilizing the formally-
verified seL4 microkernel, RISC-
V system designers are
sacrificing strong isolation and
security features

Current Situation & Problems

Current Situation

2

Problem 1 Problem 2

RISC-V

3

RISC-V: Background

○ Open ISA based on RISC architecture

○ Original developed by University of California Berkely in 2010

• Standard is now managed by RISC-V International

○ Functionality is expanded with the extension modules

• Ex: the M module provides multiplication and division instructions

• Custom modules can be easily created to better fit niche areas:

• High-assurance security

• High reliability

○ Great fit for seL4

• Open HW and SW stack

4

RISC-V ISA
Extension

Description

M Enables multiplication and division

A Enables atomic instructions

F Enables floating point instructions

D Enables double precision floating point instructions

G Enables modules M, A, F, D.

Q Quad precision floating-point instructions

L Decimal floating-point instructions

C Compressed instructions

B Bit manipulation instructions

J Dynamically translated languages support

T Transactional memory support

P Packed-single Instruction Multiple Data

V Vector operation instructions

N User-level interrupt support

H Hypervisor support

S Supervisor level instructions

RISC-V Privilege Model

5

RISC-V: Hypervisor Extensions

○ Hypervisor ISA ratified December 2021

○ Updates privilege modes

○ Adds hypervisor instructions

○ Adds hypervisor and virtualized versions of registers

○ Adds two-stage address translation

○ Updates traps

6

RISC-V: Previous Work on seL4 VMM

○ We pitched this to our customer 1.5 years before the contract started

• At the time no work had started in this area

• We planned to do everything from scratch

○ Luckily, we found out that a lot of great work on QEMU was already completed by Yanyan Shen

• Initial seL4 VMM on QEMU was working!

• However, that was roughly what we had planned to do, so we needed to identify a way we could still provide
value to our customer and the community

• We ended up on porting the QEMU implementation to a soft-core RISC-V implementation with the Hypervisor
extension

7

8

A RISC-V soft-core implementation

Rocket Chip

Rocket Chip: Background

○ Created by the EECS Department, University of California, Berkeley in 2016

○ Chipyard -> Rocket Chip → Open-source Sysem-on-Chip design generator that
emits synthesizable RTL

• Leverages the Chisel hardware construction language to compose a library of
generators for cores, caches, and interconnects into an integrated SoC

• Generates general-purpose processor cores that use the open RISC-V ISA, and
provides both an in-order core generator (Rocket) and an out-of-order core
generator (BOOM)

○ Other RISC-V generators and soft-cores are available

• We have experience with Rocket Chip already

• seL4test run on ZCU102 port of Rocket Chip w/o hypervisor extensions

• Saw that someone had implemented the H-Extension on it

9

Rocket Chip: Our Implementation

○ Found a fork that supported H-extensions and worked on the FPGA on a Xilinx ZCU104

• Thanks to the Bao Hypervisor team!

• Ported that to work on the FPGA on a Xilinx ZCU102

○ Generated Rocket Chip RTL and imported that into the Xilinx Vivado tool

○ Hooked up the Rocket Chip SoC to vital pieces of the system

• Resets, Clocks and RAM

• UART

• IRQs

• MMIO

○ Built the bitstream and booted on the board

• Was able to test with a native Linux and seL4Test

10

Rocket Chip: Programmable Logic

11

Development
seL4 VMM on the Rocket Chip
instantiation

12

13

Development: Major Issues/Changes on the Rocket Chip

○ Compressed (C) mode (Instructions can be 32-bit or 16-bit)

• The VMM’s PLIC emulation worked for QEMU since C mode isn’t enabled so all instructions could be assumed to be 32-bit

• Updated the emulation code to check the size of each store/load instruction to emulate it accordingly

• Updated program counter advancing logic to account for the correct size of the instruction

• This was always assumed to be 32-bits as well, so a 16-bit instruction would jump over the next 16-bit instruction or start in
the middle of the next 32-bit instruction

○ QEMU PLIC Errata

• Some PLIC handling code in the microkernel was written to address a bug in QEMU, therefore it didn’t match up with the PLIC
specification

• That bug was not present on the Rocket Chip, so correct handling was added for the PLIC and ifdefs were used to make sure it
still functioned for both platforms

14

Development: Minor Issues/Changes on the Rocket Chip

○ New DTS specific to the Rocket-chip on ZCU102

• Needs to be updated anytime you update devices for the soft-core

○ Update memory configuration to support larger guest image

• Our kernel and ramdisk ended up quite a bit bigger than the QEMU image, so increased Allocator Pool

○ Pass-through a UART device instead of emulating OpenSBI serial API

○ Implement SBI_REMOTE_FENCE_I to support OpenSBI spec

• Expected by newer Linux guest

15

Development: Results

○ Single Linux VM booting on the Rocket Chip with UART
passed-through

○ Mainlined and/or Open Sourced this work

○ Added the Rocket Chip on ZCU102 with H-Extensions
as a supported hardware platform for seL4:

• https://docs.sel4.systems/Hardware/rocketchip-
zcu102.html

• Documentation included to replicate our results

16

https://docs.sel4.systems/Hardware/rocketchip-zcu102.html
https://docs.sel4.systems/Hardware/rocketchip-zcu102.html

Future Work: Match features of other architectures

○ Support more advanced configurations:

• Multiple VMs

• Serial Server

• Multicore

• Pass-through of more complicated devices (Ethernet,
USB, etc.)

○ Run on real hardware

• A real processor with the H-extension will be available at
some point (hopefully soon)

○ Use standardized VMM implementation

• Lots of code ripped out from various mainline repos to
speed up development

• Relocate architecture specific VMM code into
corresponding libraries

• Port to a mainline VMM implementation:

• CAmkES_VM

• Microkit VMM

17

Questions?

18

References

○ https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.pdf

○ https://chipyard.readthedocs.io/en/stable/Generators/Rocket-Chip.html

○ https://dornerworks.com/blog/sel4-on-risc-v-rocket-chip/

○ https://docs.sel4.systems/Hardware/rocketchip-zcu102.html

○ https://riscv.org/technical/specifications/

19

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.pdf
https://chipyard.readthedocs.io/en/stable/Generators/Rocket-Chip.html
https://dornerworks.com/blog/sel4-on-risc-v-rocket-chip/
https://docs.sel4.systems/Hardware/rocketchip-zcu102.html
https://riscv.org/technical/specifications/

	Intro
	Slide 1: seL4 VMM on the RISC-V Rocket Chip
	Slide 2: Current Situation & Problems

	RISC-V
	Slide 3: RISC-V
	Slide 4: RISC-V: Background
	Slide 5: RISC-V Privilege Model
	Slide 6: RISC-V: Hypervisor Extensions
	Slide 7: RISC-V: Previous Work on seL4 VMM

	Rocket Chip
	Slide 8: Rocket Chip
	Slide 9: Rocket Chip: Background
	Slide 10: Rocket Chip: Our Implementation
	Slide 11: Rocket Chip: Programmable Logic

	Development
	Slide 12: Development
	Slide 13
	Slide 14: Development: Major Issues/Changes on the Rocket Chip
	Slide 15: Development: Minor Issues/Changes on the Rocket Chip
	Slide 16: Development: Results
	Slide 17: Future Work: Match features of other architectures

	Conclusion
	Slide 18: Questions?

	Backup Slides
	Slide 19: References

