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• DornerWorks collaborates with 
multiple customers in various 
industries to utilize seL4 on real 
world systems

• RISC-V is an attractive platform 
for open-source solutions, such 
as seL4

• Virtualization is a great way to 
get the benefits of seL4 without 
needing to write a lot of 
components from scratch

• RISC-V is lagging behind some 
other platforms for 
virtualization support 

• Software and hardware

• By not utilizing the formally-
verified seL4 microkernel, RISC-
V system designers are 
sacrificing strong isolation and 
security features

Current Situation & Problems

Current Situation
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RISC-V
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RISC-V: Background

○ Open ISA based on RISC architecture

○ Original developed by University of California Berkely in 2010

• Standard is now managed by RISC-V International

○ Functionality is expanded with the extension modules

• Ex: the M module provides multiplication and division instructions

• Custom modules can be easily created to better fit niche areas:

• High-assurance security 

• High reliability

○ Great fit for seL4

• Open HW and SW stack
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RISC-V ISA 
Extension

Description

M Enables multiplication and division

A Enables atomic instructions

F Enables floating point instructions

D Enables double precision floating point instructions

G Enables modules M, A, F, D.

Q Quad precision floating-point instructions

L Decimal floating-point instructions

C Compressed instructions

B Bit manipulation instructions

J Dynamically translated languages support

T Transactional memory support

P Packed-single Instruction Multiple Data

V Vector operation instructions

N User-level interrupt support

H Hypervisor support

S Supervisor level instructions



RISC-V Privilege Model
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RISC-V: Hypervisor Extensions

○ Hypervisor ISA ratified December 2021

○ Updates privilege modes

○ Adds hypervisor instructions

○ Adds hypervisor and virtualized versions of registers

○ Adds two-stage address translation 

○ Updates traps
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RISC-V: Previous Work on seL4 VMM

○ We pitched this to our customer 1.5 years before the contract started

• At the time no work had started in this area

• We planned to do everything from scratch

○ Luckily, we found out that a lot of great work on QEMU was already completed by Yanyan Shen

• Initial seL4 VMM on QEMU was working!

• However, that was roughly what we had planned to do, so we needed to identify a way we could still provide 
value to our customer and the community

• We ended up on porting the QEMU implementation to a soft-core RISC-V implementation with the Hypervisor 
extension
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A RISC-V soft-core implementation

Rocket Chip



Rocket Chip: Background

○ Created by the EECS Department, University of California, Berkeley in 2016

○ Chipyard -> Rocket Chip → Open-source Sysem-on-Chip design generator that 
emits synthesizable RTL

• Leverages the Chisel hardware construction language to compose a library of 
generators for cores, caches, and interconnects into an integrated SoC

• Generates general-purpose processor cores that use the open RISC-V ISA, and 
provides both an in-order core generator (Rocket) and an out-of-order core 
generator (BOOM)

○ Other RISC-V generators and soft-cores are available

• We have experience with Rocket Chip already

• seL4test run on ZCU102 port of Rocket Chip w/o hypervisor extensions

• Saw that someone had implemented the H-Extension on it
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Rocket Chip: Our Implementation

○ Found a fork that supported H-extensions and worked on the FPGA on a Xilinx ZCU104

• Thanks to the Bao Hypervisor team!

• Ported that to work on the FPGA on a Xilinx ZCU102

○ Generated Rocket Chip RTL and imported that into the Xilinx Vivado tool 

○ Hooked up the Rocket Chip SoC to vital pieces of the system

• Resets, Clocks and RAM

• UART

• IRQs

• MMIO

○ Built the bitstream and booted on the board

• Was able to test with a native Linux and seL4Test
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Rocket Chip: Programmable Logic
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Development
seL4 VMM on the Rocket Chip 
instantiation
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Development: Major Issues/Changes on the Rocket Chip

○ Compressed (C) mode (Instructions can be 32-bit or 16-bit)

• The VMM’s PLIC emulation worked for QEMU since C mode isn’t enabled so all instructions could be assumed to be 32-bit 

• Updated the emulation code to check the size of each store/load instruction to emulate it accordingly

• Updated program counter advancing logic to account for the correct size of the instruction

• This was always assumed to be 32-bits as well, so a 16-bit instruction would jump over the next 16-bit instruction or start in 
the middle of the next 32-bit instruction

○ QEMU PLIC Errata

• Some PLIC handling code in the microkernel was written to address a bug in QEMU, therefore it didn’t match up with the PLIC 
specification

• That bug was not present on the Rocket Chip, so correct handling was added for the PLIC and ifdefs were used to make sure it 
still functioned for both platforms
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Development: Minor Issues/Changes on the Rocket Chip

○ New DTS specific to the Rocket-chip on ZCU102

• Needs to be updated anytime you update devices for the soft-core

○ Update memory configuration to support larger guest image

• Our kernel and ramdisk ended up quite a bit bigger than the QEMU image, so increased Allocator Pool

○ Pass-through a UART device instead of emulating OpenSBI serial API

○ Implement SBI_REMOTE_FENCE_I to support OpenSBI spec

• Expected by newer Linux guest
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Development: Results

○ Single Linux VM booting on the Rocket Chip with UART 
passed-through

○ Mainlined and/or Open Sourced this work

○ Added the Rocket Chip on ZCU102 with H-Extensions 
as a supported hardware platform for seL4:

• https://docs.sel4.systems/Hardware/rocketchip-
zcu102.html

• Documentation included to replicate our results
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Future Work: Match features of other architectures

○ Support more advanced configurations:

• Multiple VMs

• Serial Server

• Multicore

• Pass-through of more complicated devices (Ethernet, 
USB, etc.)

○ Run on real hardware

• A real processor with the H-extension will be available at 
some point (hopefully soon)

○ Use standardized VMM implementation

• Lots of code ripped out from various mainline repos to 
speed up development

• Relocate architecture specific VMM code into 
corresponding libraries

• Port to a mainline VMM implementation:

• CAmkES_VM

• Microkit VMM
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Questions?
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