selL4: Experiences,
Improvements, and
Optimizations

Chris Guikema, DornerWorks

Common selL4 Use Cases

* |solate legacy systems in Virtual Machines

sel.4 Thread #1 sel.4 Thread #2 sel.4 Thread #3

- J

Common selL4 Use Cases

* |solate legacy systems in Virtual Machines

e Cross-domain Solution

Secure VM General Purpose VM

Common selL4 Use Cases

* |solate legacy systems in Virtual Machines

e Cross-domain Solution

Secure VM H

General Purpose VM

Virtio-Net

o Software implementation of a network device

Virtio-Net

o Software implementation of a network device

* | everage existing network stacks to communicate between VMs

Virtio-Net

o Software implementation of a network device

* | everage existing network stacks to communicate between VMs

* Not Linux-specific

Virtio-Net

o Software implementation of a network device

* | everage existing network stacks to communicate between VMs

* Not Linux-specific

Guest Memory ¥ Emulation Layer
Guest Memory Emulation Layer g

e >

How does it work?

From the guest’s perspective

 Host implements a virtual PCI| bus with virtio-net device present

How does it work?

From the guest’s perspective

 Host implements a virtual PCI| bus with virtio-net device present

» Guest scans PCI bus and loads virtio-net driver

How does it work?

From the guest’s perspective

 Host implements a virtual PCIl bus with virtio-net device present
* Guest scans PCI bus and loads virtio-net driver

o Standard network device available for use by any networking application

root@xilinx—-zcul@2-2021_1:~# 1ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue qlen 1000
link/ loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_1ft forever preferred_Llft forever
inet6 ::1/128 scope host
valid_Llft forever preferred_Llft forever
: eth@: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 15964 qgdisc pfifo_fast qlen 1000
link/ether 00:00:00:00:00:01 brd ff:ff:ff:ff:ff:ff
inet 192.168.1.1/24 scope global etho
valid_1ft forever preferred_Llft forever
inet6 fe80::200:ff:fe00:1/64 scope link
valid_Llft forever preferred_Llft forever
: S1t@E@NONE: <NOARP> mtu 1480 gdisc noop glen 1000
link/sit 0.0.0.0 brd 0.0.0.0

How does it work?

 Host implements a virtual PCI bus with virtio-net device present

How does it work?

 Host implements a virtual PCI bus with virtio-net device present

* (Guest accesses the PCI bus when transmitting a packet

How does it work?

 Host implements a virtual PCI bus with virtio-net device present
* (Guest accesses the PCI bus when transmitting a packet

 Host knows where the network packet is stored in memory

o 08 92 04 C9 64 82§08 92 04 C9 64 8B f§08 00
Destination

Source

How does it work?

* Host receives a notification with a virtio-net specific badge

O VirtioNet * now

Notification

You've got a packet in your virtqueue!

Security. Performance. Proof.

How does it work?

 Host receives a notification with a virtio-net specific badge

 Host reads the packet from the virtqueues and into guest memory

08 92 04 CY9 o4 SARO3 92 04 CO 04 cB g 08 00

Destination Source o

How does it work?

 Host receives a notification with a virtio-net specific badge

 Host reads the packet from the virtqueues and into guest memory

 Host injects an interrupt to the guest

How well does virtio-net work on selL4?

 Works great for simple communication path

* pings, status updates, etc

How well does virtio-net work on selL4?

 Works great for simple communication path
* pings, status updates, etc

* Works poorly for throughput focused application

root@zcul@2-zynqmp:~# iperf3 —-c 192.168.1.2
Connecting to host 192.168.1.2, port 5201

5] local 192.168.1.1 port 39930 connected to 192.168.1.2 port 5201

ID] Interval Transfer Bitrate Retr Cwnd
.00-1.00 .46 MBytes 54.2 Mbits/sec 14 60.8 KBytes
.00-2.00 .53 MBytes 46.4 Mbits/sec 26 43.8 KBytes
.00-3.00 .46 MBytes 54.2 Mbits/sec 5 35.4 KBytes
.00-4.00 .78 MBytes 48.5 Mbits/sec 13 39.6 KBytes
.00-5.00 .47 MBytes 45.9 Mbits/sec 28 7.07 KBytes
.00-6.00 .72 MBytes 48.0 Mbits/sec 29 31.1 KBytes
.00-7.00 .22 MBytes 43.8 Mbits/sec 37 14.1 KBytes
.00-8.00 .90 MBytes 49.5 Mbits/sec 32.5 KBytes
.00-9.00 MBytes Mbits/sec 65.0 KBytes
.00-10.00 Mbits/sec 8.48 KBytes

UOrOU1O1 01 U1 O1OU1TOY U1 OY
OUTUTOLOSOSOUINSBN

0
1
2
3
4
5
§
7/
8
9

Interval Transfer Bitrate
0.00-10.00 58.0 MBytes 48.7 Mbits/sec
0.00-10.01 57.4 MBytes 48.1 Mbits/sec

Guest Memory Access

 Problem: accessing data from guest memory is slow

o

Guest Memory Access

 Problem: accessing data from guest memory is slow
e Upstream methodology:

1. Find physical address to read from

Guest Memory Access

 Problem: accessing data from guest memory is slow
e Upstream methodology:
1. Find physical address to read from

2. Find capability associated with the Guest’s page

Guest Memory Access

 Problem: accessing data from guest memory is slow
e Upstream methodology:

1. Find physical address to read from

2. Find capability associated with the Guest’s page

3. Use capability to map that page into Host’s address space

Guest Memory Access

 Problem: accessing data from guest memory is slow
* Upstream methodology:

1. Find physical address to read from
Find capability associated with the Guest’s page

Use capability to map that page into Host’s address space

.

Read/write information using that page

Guest Memory Access

 Problem: accessing data from guest memory is slow
e Upstream methodology:
1. Find physical address to read from
Find capability associated with the Guest’s page
Use capability to map that page into Host’s address space

Read/write information using that page

.

Unmap the page from the Host’s address space

Virtio-Net Memory Access

e How often does the host need to access the
guest’s memory?

e Aot

e 4 functions:

uintl6_t ring_avail(virtio_emul_t xemul, struct vring *vring, uintl6_t idx)

1. ring avail reads guest memory once {

uintl6_t elem;
vm_guest_read_mem(emul->vm, &elem, (uintptr_t) & (vring->avail->ring[idx % vring->num]), sizeof(elem));

return elem;

Virtio-Net Memory Access

e How often does the host need to access the
guest’s memory?

e Aot

e 4 functions:

uintl6_t ring_avail_idx(virtio_emul_t *emul, struct vring *vring)

1. ring avail reads guest memory once {

uintl6_t idx;
vm_guest_read_mem(emul->vm, &idx, (uintptr_t)&vring->avail->idx, sizeof(vring-=avail->idx));

2. ring avail idx reads guest memory return idx;
once

Virtio-Net Memory Access

e How often does the host need to access the
guest’s memory?

e Aot

e 4 functions:

struct vring_desc ring_desc(virtio_emul_t xemul, struct vring *vring, uintl6_t idx)

1. ring avail reads guest memory once ! |
o struct vring_desc desc;
vm_guest_read_mem(emul->vm, &desc, (uintptr_t) & (vring->desc[idx]), sizeof(desc));
2. ring avail idx reads guest memory return desc;
}

once

3. ring desc reads guest memory once

Virtio-Net Memory Access

e How often does the host need to access the
guest’s memory?

e Aot

e 4 functions:

void ring_used_add(virtio_emul_t *emul, struct vring *vring, struct vring_used_elem elem)

{
1. ring avail reads guest memory once uint16_t guest_idx;
e vm_guest_read_mem(emul->vm, &guest_idx, (uintptr_t)&vring->used->idx, sizeof(vring->used->idx));
vm_guest_write_mem(emul->vm, &elem, (uintptr_t)&vring->used->ring[guest_idx % vring->num], sizeof(elem));
' : : guest_idx++;
22' ITJ—IIQJ__Ei\fEi:1“11__J-Ci>< r‘321(155 EJLJEBESt rT1EBrT1C)r3/ vm_guest_write_mem(emul->vm, &guest_idx, (uintptr_t)&vring->used->idx, sizeof(vring->used->idx));
once }

3. ring desc reads guest memory once

4. ring used add reads guest memory

once, writes guest memory twice

Guest Memory Access - Transmit Path

o cemillgguieis £/ X1

s XD i 10X, ring ayadlsring desc

e 1x: direct read of guest memory to get network packet
e emul tx compilcis-t

e IX! ring used add
e Jotal:

e / Maps, / unmaps

Guest Memory Access - Receive Path

* clllgmmmms.cOMp . ctCe.

s IX! ring casaeielaidec oo gizail, ring desc
* 1X: direct write of guest memory to give network packet
* Jotal:

e / maps, / unmaps

Can we speed this up?

* Old x86 libraries had a “Translation Vspace” implementation

Can we speed this up?

* Old x86 libraries had a “Translation Vspace” implementation

 Each page of guest memory remains mapped to the host

Can we speed this up?

* Old x86 libraries had a “Translation Vspace” implementation

 Each page of guest memory remains mapped to the host

How does this help?

Translation Vspace

Results

 Throughput improves by around
8X!

5] local 192.168.1.2 port 45814 connected to 192.168.1.1 port
ID] Interval Transfer Bitrate Retr Cwnd
5] .00-1.01 sec 46.2 MBytes 385 Mbits/sec 199
5] .01-2.01 sec 45.0 MBytes 378 Mbits/sec 132
5] .01-3.02 sec 46.2 MBytes 382 Mbits/sec 164
5] .02-4.01 sec 45.0 MBytes 381 Mbits/sec 156
5] .01-5.01 sec 45.0 MBytes 381 Mbits/sec 150
.01-6.02 sec 46.2 MBytes 381 Mbits/sec 147
.02-7.02 sec 45.0 MBytes 381 Mbits/sec 189
.02-8.02 sec 45.0 MBytes 375 Mbits/sec 163
.02-9.01 sec 45.0 MBytes 381 Mbits/sec 195
.01-10.01 Mbits/sec 198

OSSOSO SOONOSOSONON

0
1
2
3
4
5
6
7/
8
9

Interval Transfer Bitrate
0.00-10.01 454 MBytes 380 Mbits/sec
0.00-10.01 454 MBytes 380 Mbits/sec

Translation Vspace

400
Results
e Throughput improves by around 20U
' 7p)
8x! ol
@)
=3
5
a 200
5] local 192.168.1.2 port 45814 connected to 192.168.1.1 port < G
ID] Interval Transfer Bitrate Retr Cwnd @)

5] ©0.00-1.01 sec 46.2 MBytes 385 Mbits/sec 199 -
1.01-2.01 sec 45.0 MBytes 378 Mbits/sec 132 O
2.01-3.02 sec 46.2 MBytes 382 Mbits/sec 164 H et
3.02-4.01 sec 45.0 MBytes 381 Mbits/sec 156 —
4.01-5.01 sec 45.0 MBytes 381 Mbits/sec 150
5.01-6.02 sec 46.2 MBytes 381 Mbits/sec 147 100 B
6.02-7.02 sec 45.0 MBytes 381 Mbits/sec 189
7.02-8.02 sec 45.0 MBytes 375 Mbits/sec 163
8.02-9.01 sec 45.0 MBytes 381 Mbits/sec 195
9.01-10.01 .0 Mbits/sec 198

Interval Transfer Bitrate
0.00-10.01 454 MBytes 380 Mbits/sec
0.00-10.01 454 MBytes 380 Mbits/sec j 0

Baseline Translation Vspace

R

With Great Throughput Comes... i

More bugs

* |ncreasing the throughput introduced a number of bugs into the system that
aren’t seen at lower speeds

R

With Great Throughput Comes... i

More bugs

* |ncreasing the throughput introduced a number of bugs into the system that
aren’t seen at lower speeds

 Most were simple to fix:

 More data going through virtqueues -> increase virtqueue size, etc.

R

With Great Throughput Comes... i

More bugs

* |ncreasing the throughput introduced a number of bugs into the system that
aren’t seen at lower speeds

 Most were simple to fix:
 More data going through virtqueues -> increase virtqueue size, etc.
e Others, not so much:

* |ncreased throughput clobbers the cache and can lead to descriptor
corruption

Optimizing the Virtio-Net Driver

Guest Memory ¥4 Emulation Layer

Module Layer Virtqueues

Guest Memory

Emulation Layer § Module Layer Virtqueues

Optimizing the Virtio-Net Driver

Guest Memory ¥4 Emulation Layer

Module Layer Virtqueues

Guest Memory

Emulation Layer pa Module Layer Virtqueues

Optimized Memcpy

600
Results

Connecting to host 192.168.1.100, port 5201 450
5] local 192.168.1.101 port 36190 connected to 192.168.1.100 port 5201 —
ID] Interval Transfer Bitrate Retr Cwnd 2,
5] 0.00-1.01 64.9 MBytes 541 Mbits/sec @ 260 Q
5] 1.01-2.02 62.4 MBytes 518 Mbits/sec @ 273 an
2.02-3.01 61.2 MBytes 521 Mbits/sec @ 287 =
3.01-4.02 62.5 MBytes 519 Mbits/sec 0 287 S
4.02-5.00 61.2 MBytes 519 Mbits/sec 0 287 "5

5.00-6.01 62.5 MBytes 520 Mbits/sec @ 287 o 300
6.01-7.02 62.5 MBytes 521 Mbits/sec 0 287 oo
7.02-8.01 61.2 MBytes 520 Mbits/sec 0 287 '®))
8.01-9.01 62.5 MBytes 520 Mbits/sec 0 287 =
9.01-10.00 .2 Mbits/sec 0 287 e
Interval Transfer Bitrate |£

0.00-10.00 622 MBytes 522 Mbits/sec
0.00-10.01 622 MBytes 521 Mbits/sec ' 150
0

Baseline Translation Vspace Optimization

What’s next?

 DornerWorks is open-sourcing the Translation Vspace and memcpy
optimizations

 We also developed a further improvement available for purchase...

What’s next?

1600

1200

root@xilinx-zcul@02-2021_1:~# iperf3 —-c 192.168.1.2

Connecting to host 192.168.1.2, port 5201
5] local 192.168.1.1 port 58794 connected to 192.168.1.2 port
ID] Interval Transfer Bitrate Retr Cwnd
5] .00-1.01 sec 179 MBytes .49 Gbits/sec 357
5] .01-2.00 sec 172 MBytes .46 Gbits/sec 202
5] .00-3.00 sec 176 MBytes .48 Gbits/sec 295
5] .00-4.01 sec 176 MBytes .47 Gbits/sec 280
5] .01-5.00 sec 176 MBytes .49 Gbits/sec 264
5] .00-6.00 sec 176 MBytes .47 Gbits/sec 373

.00-7.00 sec 175 MBytes .47 Gbits/sec 295

.00-8.01 sec 176 MBytes .47 Gbits/sec 280

.01-9.00 sec 175 MBytes Gbits/sec 295

.00-10.01 Gbits/sec 280

1010,

CONOURWNROS
RRRRRRRRRR

Interval Transfer
0.00-10.01 1.72 GBytes 1.47 Gbits/sec
0.00-10.02 1.72 GBytes 1.47 Gbits/sec

Throughput (Mbps)

210]0

0 - I
Baseline Translation Vspace Optimization DW Proprietary

