

System Information Flow Analysis

Ihor Kuz

seL4 summit 2023

• Protection: Security

- Discover and remove vulnerabilities
- Design to prevent threats and vulnerabilities
- Information Flow is a critical part of this

Security and Information Flow Information Flow and seL4 Static Systems Dynamic Systems

Security and Information Flow

- Security Policy: what is allowed/disallowed
- Information Flow as part of security policy
 - Consider system as a communication graph
 - What information flows should be
 - allowed?
 - forbidden?
 - required?

Example: Confidential Data

Example: Encrypted Data

Example: Sanitised Input

Example: Multi-tenancy

System Information Flow Analysis | Ihor Kuz

Formal Information Flow

- Security Model:
 - Formal model, property, policy, mechanism, analysis, assurance
- Multi-level Security (MLS): policy: no write down, no read up
 - Bell-LaPadula (C), Biba (I)
- MILS: separation kernel, mechanisms, no flow policy
- Separation:
 - Non-interference: traces actions of high can't affect output of low
 - GWV separation: allowed communication between memory segments
- Take-grant: access control model
- Data flow graph analysis

Information Flow and seL4

- seL4 security proofs
 - Integrity/Access Control: Take grant
 - Confidentiality: (intransitive) Non-interference
- Limitations
 - Domain scheduler
 - Cap transfer limitations
 - No cap transfer after initialization (C)
 - Grant => same label
 - Call requires Grant
 - No interrupts

Information Flow in Static Systems

- Static System
 - Resources allocated at init
 - Processes, communication channels, memory access, etc.
 - Never change
- Analysis
 - Formal analysis (non-interference, etc.)
 - Graph analysis
- Rely on seL4 security properties
 - Communication only through defined channels

Information Flow in Dynamic Systems

- Static systems too limiting
- Dynamic Systems
 - Change over time
- Categories
 - Semi-static: static architecture restart components, connections
 - Semi-dynamic: replace static architecture
 - Fully Dynamic: create/destroy components and connections

Semi-static Example

Semi Static Analysis

- Static graph analysis
- Component/Connection restart: must ensure
 - Flow doesn't change: same before and after restart
 - Restarted component has same resources
 - Restarted connections connect same components
 - System state during restart doesn't violate policy

Semi-dynamic Example

Semi-Dynamic Analysis

- Switching static architecture
 - Ensure new architecture doesn't violate policy
 - Admission check:
 - architecture analysis: online or offline
 - Ensure system between architectures doesn't violate policy
 - Like system init for static systems
- Challenges
 - Dealing with state while switching
 - Partial switch (only switch components that change)

Fully Dynamic Example

- start webserver.elf
- start database.elf
- connect webserver database
- start mailserver.elf
- connect mailserver database
- stop webserver.elf
- start gameserver.elf
- connect gameserver database

Fully Dynamic Analysis

- Single controller vs Decentralised control
 - Can *any* component create new components?
- Challenges
 - Monitor when components create new components/connections
 - Maintain internal model of graph
 - Analyse graph at run-time
 - Verify all components that create new components/connections
 - Ensure they don't violate information flow policy

Kry10 OS

- Semi-dynamic system
- Manifest. defines:
 - components, allowable connections
- Dynamic features
 - Component restart
 - Component update
 - Dynamic connections
 - System update

Information Flow Analysis for Kry10 OS

- Static Graph Analysis
 - Based on manifest description
- System as a succession of Static Graphs
 - Admittance checks
- Key challenges
 - Root component
 - Loading: system == manifest
 - Restarting: doesn't change graph
 - Message server
 - Connections are as expected
 - What do we need from seL4?

Conclusion

- Information Flow is important part of Security
- Many formal models, often too strong
- Static Systems
 - Information flow analysis as graph analysis
- Dynamic Systems
 - Reuse static graph analysis when possible
 - Kry10 working on semi-dynamic systems with graph analysis