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Usable CPU count by kernel configuration
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Unicore SMP

SMP seL4 configurations
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Unicore SMPMultikernel
(AMP)

(Re)Introducing: Partitioned multikernel
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Follow-up steps

• SMP-like user apps
• Scalable cross-core notifications
• Investigating impact of replicated 

data on shared caches
• Transparent cross-core 

seL4RPCCall CAmkES connectors
• Finish off multi-vm multicore 

example
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Usable vCPU count by kernel configuration
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SMP guests on partitioned hosts
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SMP guests on partitioned hosts
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• Parallel execution units
• Memory caching hierarchy
• MMU needed for each core
• Interrupt controller can interrupt per core
• Hardware peripherals  on system bus
• Synchronization needs

SMP overview
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Virtual 
devices

• Stage 2 address translation
• VMID
• Virtual interrupt controller (vGIC)
• System register remapping
• Virtual timers 
• Virtual devices

Arm Hyp extns.



Like a distributed system (with shared mem)
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Regular operation
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1. 1.1. Both cores are running in the guest
• Regular ISA operations are largely the same
• Memory operations work the same way
• Process context switching
• TLB shootdown
• Cache invalidation
• Spin lock synchronisation



Initialization
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Virtual Interrupt controller (vGIC)
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Other Examples
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• Virtual devices eg virtio_net
• Cross platform communication
• Privileged operations (SMC calls 

or protected device access)



Does it work?

17

Yes

Insert recording here



Discussion and extensions

• Dynamic systems
• multiple vms.
• power on and off cores
• Where are scalability issues?
• How trustworthy can VMM layer be?
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