
More Multiprocessing on seL4:
Are efficient SMP Virtual Machines Possible on Verifiable
seL4 Kernels today?
Kent McLeod | seL4 Summit 2023 | Minneapolis, USA

Multiprocessing on seL4 with verified kernels
Kent McLeod | seL4 Summit 2022 | Munich, Germany

Last year:

Usable CPU count by kernel configuration

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8

U
sa

bl
e

co
re

s

Hardware available cores

Unverified Verified
3

Unicore SMP

SMP seL4 configurations

4

Unicore SMPMultikernel
(AMP)

(Re)Introducing: Partitioned multikernel

5

Follow-up steps

• SMP-like user apps
• Scalable cross-core notifications
• Investigating impact of replicated

data on shared caches
• Transparent cross-core

seL4RPCCall CAmkES connectors
• Finish off multi-vm multicore

example

6

Last year:

Usable vCPU count by kernel configuration

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8

U
sa

bl
e

vi
rt

ua
lc

or
es

Hardware available cores

Unverified Verified
7

SMP guests on partitioned hosts

8

seL4

vmm_driver.1 vmm_driver.2

seL4

Node 1 Node 2

Virtual machine environmentVirtual machine
environment

SMP guests on partitioned hosts

9

seL4.1

Linux (smp)

seL4.2

Node 1 Node 2

vmm_driver.1 vmm_driver.2

Node 1 Node 2

Virtual machine
environment

Memory I/O
device

I/O
device

CPU
Block

Execution unit Execution
unit

L1
Cache

L2 Cache

10

System bus

GIC

GIC CPU IF GIC CPU IF

MMU
L1

Cache MMU

• Parallel execution units
• Memory caching hierarchy
• MMU needed for each core
• Interrupt controller can interrupt per core
• Hardware peripherals on system bus
• Synchronization needs

SMP overview

Memory I/O
device

I/O
device

CPU
Block

Execution unit Execution unit

L1
Cache

L2 Cache

11

System bus

GIC

GIC CPU IF GIC CPU IF

MMUL1
Cache

MMU

vgic vgic

VMID VMID

Hyp regs Hyp regs

Virtual
devices

• Stage 2 address translation
• VMID
• Virtual interrupt controller (vGIC)
• System register remapping
• Virtual timers
• Virtual devices

Arm Hyp extns.

Like a distributed system (with shared mem)

K1 K2

H1 H2

G1 G2

GuestH1 privateKernel 1 Kernel 2H2 private
H
shared

guest.1

hypervisor.1

kernel.1

guest.2

hypervisor.2

kernel.2

Dataport
+ Signalling

(Same vmid)

Regular operation

K1 K2

H1 H2

G1 G2

GuestH1 privateKernel 1 Kernel 2H2 private
H
shared

1. 1.1. Both cores are running in the guest
• Regular ISA operations are largely the same
• Memory operations work the same way
• Process context switching
• TLB shootdown
• Cache invalidation
• Spin lock synchronisation

Initialization

14Time since boot

1

2

H1 inits state
(replicated)

H2 inits state
(replicated)

G1
launch

G1
psci

H1
trap

K2

K1H1
stage 2 G1 wfi

H2
stage 2

H1
globals

G2 launchK2 H2
psci

G1
resume

Virtual Interrupt controller (vGIC)

15Time since boot

1

2

H1 inits
device state

H2 inits
device state

G1
probes

G1
dist

G1
rdist

G1
ppi

G2
rdist

G2
ppi

G2
SGI

H2
trap K2

K1 H1
irq

G1
irq

K2

Other Examples

K1 K2

H1 H2

G1 G2

GuestH1 privateKernel 1 Kernel 2H2 private
H1
shared

• Virtual devices eg virtio_net
• Cross platform communication
• Privileged operations (SMC calls

or protected device access)

Does it work?

17

Yes

Insert recording here

Discussion and extensions

• Dynamic systems
• multiple vms.
• power on and off cores
• Where are scalability issues?
• How trustworthy can VMM layer be?

18

