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Reducing the reliance on 
verification experts 
for seL4 proofs

seL4 is a registered trademark of LF Projects, LLC



faster + cheaper = 
better

sometimes you only need to pick two
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Automatic Verification 
of Platform Ports
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Arm 32bit

Arm 64bit

RISC-V 64bit

x86 64bit

‣ Architecture coverage fairly good 

• but proofs apply only to one 
platform/board for each architecture

‣Platform coverage recently extended for Arm 32bit 

• 3 different verified Arm platforms: 
Sabre Lite, Exynos 5, IMX8MM-EVK 

• but git branches brittle in maintenance 

• not scalable to many boards
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‣ https://docs.sel4.systems/Hardware/  
 
seL4 supports 32 different platforms

6 of these support verification 

19%



Verified seL4 Platforms (plan)
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‣ Ideally, all platforms should have verification

verified

verified

verified

verified

verified

verified

‣ Even 90% would already be great
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‣Update usually easy 

‣Maintaining multiple proof versions is painful 
(> 6h run time for a single proof check) 

‣When something does break, many copies to update 

‣Makes maintenance boring and expensive 

‣High incentive to eliminate these completely
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‣No need for verification experts in most cases 

‣No new branches or maintenance explosion 

‣When build checks fail, there is likely a real 
problem that needs deeper expertise



Why and How?



‣ Platform parameters 

‣ Config parameters

What changes in a platform port

11



‣ Platform parameters 

‣ Config parameters

‣ Platform parameters: 

• memory regions 

• devices addresses 

• board features (FPU, IRQ controller, HYP, SMMU, etc) 

What changes in a platform port

11



‣ Platform parameters 

‣ Config parameters

‣ Platform parameters: 

• memory regions 

• devices addresses 

• board features (FPU, IRQ controller, HYP, SMMU, etc) 

What changes in a platform port

11

‣ Config parameters: 

• MCS on/off 

• fast path on/off 

• number of domains 

• max retype fan-out 

• init CNode size 

• etc 



‣ Platform parameters 

‣ Config parameters

‣ Platform parameters: 

• memory regions 

• devices addresses 

• board features (FPU, IRQ controller, HYP, SMMU, etc) 

What changes in a platform port

11

‣ Config parameters: 

• MCS on/off 

• fast path on/off 

• number of domains 

• max retype fan-out 

• init CNode size 

• etc 

Can be automated



‣ Platform parameters 

‣ Config parameters

‣ Platform parameters: 

• memory regions 

• devices addresses 

• board features (FPU, IRQ controller, HYP, SMMU, etc) 

What changes in a platform port

11

‣ Config parameters: 

• MCS on/off 

• fast path on/off 

• number of domains 

• max retype fan-out 

• init CNode size 

• etc 
selects different code, 

will be harder



‣ Platform parameters 

‣ Config parameters

‣ Platform parameters: 

• memory regions 

• devices addresses 

• board features (FPU, IRQ controller, HYP, SMMU, etc) 

What changes in a platform port
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‣ Config parameters: 

• MCS on/off 

• fast path on/off 

• number of domains 

• max retype fan-out 

• init CNode size 

• etc 

selects different proof setup
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‣ Platform parameters: 

• memory regions 

• devices addresses 

• board features (FPU, IRQ controller, HYP, SMMU, etc) 

‣ Config parameters: 

• MCS on/off 

• fast path on/off 

• number of domains 

• max retype fan-out 

• init CNode size 

• etc 

Why does the proof 
break for these?
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‣ Instead: proof parameterisation 

• find sufficient conditions, e.g.: 

• physical base address must be aligned to x bits 

• must be greater than y 

• must be smaller than other config value 

• prove once: 

• all values that satisfy these conditions are safe
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One single proof that works with and without FPU?

Raf says: don’t promise that to people yet.

Ok, I won’t, but I have a bunch of ideas, and they might work.
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The goal

15

‣ Follow porting instructions 

‣ Build automatically checks conditions and generates proof input 

‣ If you want to be really sure: re-run proof 

‣ The end

‣ Looks achievable for a large set of platforms 
and config changes 

‣We’ll be working on it.
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‣ Current verification projects:

• AArch64 verification: functional correctness in Mar 2024

• MCS verification: ongoing for RISC-V, planned for AArch64

• Multikernel verification: ongoing

• Agile proofs: funding likely, starting 2024

• platform proof automation

• more generic proofs, more agility 



Summary
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‣ Platform ports: no experts required 

‣ Proof maintenance: faster and cheaper 

‣ Proof engineers: happier and less of a bottleneck

The Plan:

More capacity for features and updates



Thank You


