
Gerwin Klein | seL4 summit 2023

Reducing the reliance on
verification experts
for seL4 proofs

seL4 is a registered trademark of LF Projects, LLC

faster + cheaper =
better

sometimes you only need to pick two

How we plan to become faster and cheaper

3

‣ Formal verification is great, but
• availability of experts still a bottleneck
• development time still hard to scale

How we plan to become faster and cheaper

3

‣We can improve that
• reduce proof maintenance cost
• increase proof development speed
• make specific verification tasks automatic

‣ Formal verification is great, but
• availability of experts still a bottleneck
• development time still hard to scale

Automatic Verification
of Platform Ports

Verified seL4 Architectures

5

Arm 32bit

Arm 64bit

RISC-V 64bit

x86 64bit

‣ Architecture coverage fairly good

• but proofs apply only to one
platform/board for each architecture

Verified seL4 Architectures

5

Arm 32bit

Arm 64bit

RISC-V 64bit

x86 64bit

‣ Architecture coverage fairly good

• but proofs apply only to one
platform/board for each architecture

‣Platform coverage recently extended for Arm 32bit

• 3 different verified Arm platforms:
Sabre Lite, Exynos 5, IMX8MM-EVK

• but git branches brittle in maintenance

• not scalable to many boards

Verified seL4 Platforms (currently)

6

‣ https://docs.sel4.systems/Hardware/

seL4 supports 32 different platforms

Verified seL4 Platforms (currently)

6

‣ https://docs.sel4.systems/Hardware/

seL4 supports 32 different platforms

6 of these support verification

19%

Verified seL4 Platforms (plan)

7

‣ Ideally, all platforms should have verification

verified

verified

verified

verified

verified

verified

‣ Even 90% would already be great

New seL4 Platforms (currently)

8

‣ Follow kernel porting instructions ✅

New seL4 Platforms (currently)

8

‣ Follow kernel porting instructions ✅

‣ Now need a proof update

New seL4 Platforms (currently)

8

‣ Follow kernel porting instructions ✅

‣ Now need a proof update

‣ Can contract Proofcraft ✅

New seL4 Platforms (currently)

8

‣ Follow kernel porting instructions ✅

‣ Now need a proof update

‣ Can contract Proofcraft ✅

‣ Effort between a few days and a few weeks. 👍

New seL4 Platforms (currently)

8

‣ Follow kernel porting instructions ✅

‣ Now need a proof update

‣ Can contract Proofcraft ✅

‣ Effort between a few days and a few weeks. 👍

‣ We perform the proof update, add a branch to the proofs. 😎

New seL4 Platforms (currently)

8

‣ Follow kernel porting instructions ✅

‣ Now need a proof update

‣ Can contract Proofcraft ✅

‣ Effort between a few days and a few weeks. 👍

‣ We perform the proof update, add a branch to the proofs. 😎

‣ Proof test combinations multiply 😕

New seL4 Platforms (currently)

8

‣ Follow kernel porting instructions ✅

‣ Now need a proof update

‣ Can contract Proofcraft ✅

‣ Effort between a few days and a few weeks. 👍

‣ We perform the proof update, add a branch to the proofs. 😎

‣ Proof test combinations multiply 😕

‣ Maintenance cost increases 😕

New seL4 Platforms (currently)

8

‣ Follow kernel porting instructions ✅

‣ Now need a proof update

‣ Can contract Proofcraft ✅

‣ Effort between a few days and a few weeks. 👍

‣ We perform the proof update, add a branch to the proofs. 😎

‣ Proof test combinations multiply 😕

‣ Maintenance cost increases 😕

New seL4 Platforms (currently)

8

‣Update usually easy

‣Maintaining multiple proof versions is painful
(> 6h run time for a single proof check)

‣When something does break, many copies to update

‣Makes maintenance boring and expensive

‣High incentive to eliminate these completely

New seL4 Platforms (plan)

9

New seL4 Platforms (plan)

‣ Follow porting instructions ✅

9

New seL4 Platforms (plan)

‣ Follow porting instructions ✅

‣ Build automatically checks conditions and generates proof input ✅

9

New seL4 Platforms (plan)

‣ Follow porting instructions ✅

‣ Build automatically checks conditions and generates proof input ✅

‣ If you want to be really sure: re-run proof ✅

9

New seL4 Platforms (plan)

‣ Follow porting instructions ✅

‣ Build automatically checks conditions and generates proof input ✅

‣ If you want to be really sure: re-run proof ✅

‣ The end 🎉

9

New seL4 Platforms (plan)

‣ Follow porting instructions ✅

‣ Build automatically checks conditions and generates proof input ✅

‣ If you want to be really sure: re-run proof ✅

‣ The end 🎉

9

‣No need for verification experts in most cases

‣No new branches or maintenance explosion

‣When build checks fail, there is likely a real
problem that needs deeper expertise

Why and How?

‣ Platform parameters

‣ Config parameters

What changes in a platform port

11

‣ Platform parameters

‣ Config parameters

‣ Platform parameters:

• memory regions

• devices addresses

• board features (FPU, IRQ controller, HYP, SMMU, etc)

What changes in a platform port

11

‣ Platform parameters

‣ Config parameters

‣ Platform parameters:

• memory regions

• devices addresses

• board features (FPU, IRQ controller, HYP, SMMU, etc)

What changes in a platform port

11

‣ Config parameters:

• MCS on/off

• fast path on/off

• number of domains

• max retype fan-out

• init CNode size

• etc

‣ Platform parameters

‣ Config parameters

‣ Platform parameters:

• memory regions

• devices addresses

• board features (FPU, IRQ controller, HYP, SMMU, etc)

What changes in a platform port

11

‣ Config parameters:

• MCS on/off

• fast path on/off

• number of domains

• max retype fan-out

• init CNode size

• etc

Can be automated

‣ Platform parameters

‣ Config parameters

‣ Platform parameters:

• memory regions

• devices addresses

• board features (FPU, IRQ controller, HYP, SMMU, etc)

What changes in a platform port

11

‣ Config parameters:

• MCS on/off

• fast path on/off

• number of domains

• max retype fan-out

• init CNode size

• etc
selects different code,

will be harder

‣ Platform parameters

‣ Config parameters

‣ Platform parameters:

• memory regions

• devices addresses

• board features (FPU, IRQ controller, HYP, SMMU, etc)

What changes in a platform port

11

‣ Config parameters:

• MCS on/off

• fast path on/off

• number of domains

• max retype fan-out

• init CNode size

• etc

selects different proof setup

Why is this even an issue?

12

‣ Platform parameters:

• memory regions

• devices addresses

• board features (FPU, IRQ controller, HYP, SMMU, etc)

‣ Config parameters:

• MCS on/off

• fast path on/off

• number of domains

• max retype fan-out

• init CNode size

• etc

Why does the proof
break for these?

Why is this even an issue?

13

Why is this even an issue?

‣ Current platform and config constants:
• fixed values in the spec
• tied to a specific board, validated against that board
• tied to specific config

13

Why is this even an issue?

‣ Current platform and config constants:
• fixed values in the spec
• tied to a specific board, validated against that board
• tied to specific config

‣ Plan:
• generate spec + config values from C config
• validation still needs to happen manually!
• this kind of validation usually easier with concrete testing
• proof could be changed such that it happens to work with all reasonable values

13

Why is this even an issue?

‣ Current platform and config constants:
• fixed values in the spec
• tied to a specific board, validated against that board
• tied to specific config

‣ Plan:
• generate spec + config values from C config
• validation still needs to happen manually!
• this kind of validation usually easier with concrete testing
• proof could be changed such that it happens to work with all reasonable values

‣ Not sufficient:
• still leads to combination explosion
• still needs you to re-run the full proofs for each change

13

Why is this even an issue?

‣ Current platform and config constants:
• fixed values in the spec
• tied to a specific board, validated against that board
• tied to specific config

‣ Plan:
• generate spec + config values from C config
• validation still needs to happen manually!
• this kind of validation usually easier with concrete testing
• proof could be changed such that it happens to work with all reasonable values

‣ Not sufficient:
• still leads to combination explosion
• still needs you to re-run the full proofs for each change

13

‣ Instead: proof parameterisation

• find sufficient conditions, e.g.:

• physical base address must be aligned to x bits

• must be greater than y

• must be smaller than other config value

• prove once:

• all values that satisfy these conditions are safe

What about FPU, GIC etc

14

One single proof that works with and without FPU?

What about FPU, GIC etc

14

One single proof that works with and without FPU?

Raf says: don’t promise that to people yet.

What about FPU, GIC etc

14

One single proof that works with and without FPU?

Raf says: don’t promise that to people yet.

Ok, I won’t, but I have a bunch of ideas, and they might work.

The goal

15

‣ Follow porting instructions

‣ Build automatically checks conditions and generates proof input

‣ If you want to be really sure: re-run proof

‣ The end

The goal

15

‣ Follow porting instructions

‣ Build automatically checks conditions and generates proof input

‣ If you want to be really sure: re-run proof

‣ The end

‣ Looks achievable for a large set of platforms
and config changes

‣We’ll be working on it.

When can I have this?

Not the only thing we’re working on..

17

Not the only thing we’re working on..

17

‣ Current verification projects:

Not the only thing we’re working on..

17

‣ Current verification projects:

• AArch64 verification: functional correctness in Mar 2024

Not the only thing we’re working on..

17

‣ Current verification projects:

• AArch64 verification: functional correctness in Mar 2024

• MCS verification: ongoing for RISC-V, planned for AArch64

Not the only thing we’re working on..

17

‣ Current verification projects:

• AArch64 verification: functional correctness in Mar 2024

• MCS verification: ongoing for RISC-V, planned for AArch64

• Multikernel verification: ongoing

Not the only thing we’re working on..

17

‣ Current verification projects:

• AArch64 verification: functional correctness in Mar 2024

• MCS verification: ongoing for RISC-V, planned for AArch64

• Multikernel verification: ongoing

• Agile proofs: funding likely, starting 2024

Not the only thing we’re working on..

17

‣ Current verification projects:

• AArch64 verification: functional correctness in Mar 2024

• MCS verification: ongoing for RISC-V, planned for AArch64

• Multikernel verification: ongoing

• Agile proofs: funding likely, starting 2024

• platform proof automation

Not the only thing we’re working on..

17

‣ Current verification projects:

• AArch64 verification: functional correctness in Mar 2024

• MCS verification: ongoing for RISC-V, planned for AArch64

• Multikernel verification: ongoing

• Agile proofs: funding likely, starting 2024

• platform proof automation

• more generic proofs, more agility

Summary

Towards more agile proofs

19

‣ Platform ports: no experts required

‣ Proof maintenance: faster and cheaper

‣ Proof engineers: happier and less of a bottleneck

The Plan:

Towards more agile proofs

19

‣ Platform ports: no experts required

‣ Proof maintenance: faster and cheaper

‣ Proof engineers: happier and less of a bottleneck

The Plan:

More capacity for features and updates

Thank You

