
19/15/23 19/15/23Managed by Triad National Security, LLC, for the U.S. Department of Energy’s NNSA.

Formally Stepping Into
The Unverified World

Sandy Frost
Advanced Research In Cyber Systems
Los Alamos National Laboratory

Sept. 19, 2023

LA-UR-23-30553

29/15/23

Overview

Boot
ProcessBackground CAmkES

Verification Rust Lessons
Learned

New
Project

39/15/23

Background: Previous Project

• Identify the benefits and limitations of provable security approaches,
such as formal verification, that prove the security of protocol gateway
converter implementations

• Perform a study that compares provable security approaches to
traditional cyber assessment methods for protocol gateways, such as
pentesting and binary analysis

• Determine a recommended mix of approaches to achieve maximal
security coverage and identify remaining security gaps for new
cybersecurity research thrusts

49/15/23

Background: SCADA Protocol Gateway

Protocol gateways convert messages
between multiple protocols, such as
messages coming from SCADA systems
or industrial control centers and field
devices (e.g. motors, pumps, actuators,
sensors, etc.)

Protocols of Interest:
MODBUS, DNP3, BACNET

59/15/23

Motivation

Why choose a protocol gateway?

69/15/23

Motivation

Why choose a protocol gateway?

PROTOCOL 1 PROTOCOL 2

Read Field 1 Write Field 3Protocol
Gateway

79/15/23

Software Shortcomings can Introduce Cyber Vulnerabilities

• Malformed messages or improper message translation

• Differences between the specification and implementation

• Memory safety checks are still vulnerable to control flow mainupation (e.g.
buffer overflows allowing remote code execution)

Resources for Vulnerabilities
• MITRE Common Vulnerabilities and Exposures (CVE), DHS CISA ICS

Advisories, vendor security reports, industry white papers*

*Trend MIcro “Lost in Translation: When Industrial Protocol Translation Goes Wrong”

89/15/23

Background: SCADA Protocol Gateway

Protocol gateway formally verified
implementation:

Protocol
Specification Rust

99/15/23

Overview

Boot
ProcessBackground CAmkES

Verification Rust Lessons
Learned

New
Project

109/15/23

New Project - Expand the Security Envelope

Next step How can we expand the security envelope beyond our formally verified
protocol gateway?

Application
(protocol gateway)

Untrusted component

Operating System

Hardware

119/15/23

New Project - Expand the Security Envelope

Next step Interface our formally verified application (protocol converter) with a
formally verified microkernel (seL4).

Application
(protocol gateway)

seL4

Hardware

129/15/23

Assumptions

The seL4 Microkernel - An Introduction
• Hardware behaves as expected. This should be obvious. The kernel is at the

mercy of the underlying hardware, and if the hardware is buggy (or worse, has
Trojans), then all bets are off, whether you are running verified seL4 or any
unverified OS. Verifying hardware is outside the scope of seL4 (and the
competency of Trustworthy Systems); other people are working on that.

The Proof
• Hardware: we assume the hardware works correctly. In practice, this means

the hardware is assumed not to be tampered with, and working according to
specification. It also means, it must be run within its operating conditions.

https://sel4.systems/About/seL4-whitepaper.pdf, https://sel4.systems/Info/FAQ/proof.pml,

https://sel4.systems/About/seL4-whitepaper.pdf
https://sel4.systems/Info/FAQ/proof.pml

139/15/23

Questions

• What are the security impacts of interactions between formally verified and
unverified components?

• What is the overhead of developing, deploying and integrating seL4 into
existing systems?

• Can the security guarantees be expanded to user space programs without
using a virtual machine?
− Can seL4 run safer languages than C (e.g., Rust, Haskell, Java)?

“Software Verification and seL4: Implementing Untrusted Code in a Trusted Environment”, B. Lara, June 12, 2023

149/15/23

Objective - Setup Test Environment, Experience

Serial HDMI

seL4 Supported
Platform

159/15/23

Objective - Setup Test Environment, Experience

Serial HDMI

seL4 Supported
Platform

169/15/23

Getting Started

• Hardware and Target Supported Platforms

Platform SOC Core Arch Status

Zynq-7000 Zynq7000 Cortex-A9 ARMv7A Unverified

Raspberry Pi 3-b BCM2837 Cortex-A53 ARMv8A Unverified

Raspberry Pi 4-b BCM2711 Cortex-A72 ARMv8A Unverified

179/15/23

Getting Started

There are many repositories (42). Of the most significant are:

• l4v - the seL4 proofs
• seL4 - the seL4 kernel

Repository Motivation

seL4 Standalone build

sel4test More guidance

sel4-tutorials Examples

https://docs.sel4.systems/MaintainedRepositories

https://docs.sel4.systems/MaintainedRepositories

189/15/23

Getting Started

• Hardware and Target Supported Platforms

Platform SOC Core Arch Status

Zynq-7000 Zynq7000 Cortex-A9 ARMv7A Unverified

Raspberry Pi 3-b BCM2837 Cortex-A53 ARMv8A Unverified

Raspberry Pi 4-b BCM2711 Cortex-A72 ARMv8A Unverified

199/15/23

Getting Started

• Hardware and Target Supported Platforms

Platform SOC Core Arch Status

Zynq-7000 Zynq7000 Cortex-A9 ARMv7A Unverified

Raspberry Pi 3-b BCM2837 Cortex-A53 ARMv8A Unverified

Raspberry Pi 4-b BCM2711 Cortex-A72 ARMv8A Unverified

209/15/23

seL4 Documentation

• Reviewed of published documentation about seL4 and compiled our findings

• Audited and documented the source code of seL4

• Performed binary analysis of compiled binaries of seL4 and documented our
assessment

• Delivered a 50+ page document of our seL4 assessment

“Software Verification and seL4: Implementing Untrusted Code in a Trusted Environment”, B. Lara, June 12, 2023

219/15/23

Overview

Boot
ProcessBackground CAmkES

Verification Rust Lessons
Learned

New
Project

229/15/23

Booting on seL4 Hardware

• Stage 1 is an on board ROM bootloader. This loads bootcode.bin.
• Bootcode.bin inits the GPU and loads the next stage boot loader, start4.elf.
• Start4.elf then loads our u-boot image. This is when the seL4 boot process

begins and the Raspberry Pi generic boot process ends.
• U-boot loads in Elfloader, which loads both images into memory
• The kernel takes over from Elfloader and initializes the initial thread
• The initial thread runs, schedules userland programs, and yields control.

“seL4 Notes”, B. Lara/LANL, “Software Verification and seL4: Implementing Untrusted Code in a Trusted Environment”, B. Lara, June 12, 2023

https://github.com/raspberrypi/firmware/blob/master/boot/bootcode.bin
https://github.com/raspberrypi/firmware/blob/master/boot/start4.elf

239/15/23

Assumptions

The Proof
• Boot code: the proof currently is about the operation of the kernel after it has

been loaded correctly into memory and brought into a consistent, minimal initial
state. This leaves out about 1,200 lines of the code base that a kernel
programmer would usually consider to be part of the kernel.

https://sel4.systems/Info/FAQ/proof.pml

https://sel4.systems/Info/FAQ/proof.pml

249/15/23

Supported Platform - Raspberry Pi 4 Model B

There is a website that provides guidance
• Serial connection wiring
• U-Boot commands

− Need a special version to disable caching
• SD card setup

− The instructions say to compile U-boot and transfer the uboot.env file to the sdcard,
this file is actually called .config and is not required.

• Getting seL4 onto the Raspberry Pi 4
− The instructions say to load the kernel image at address 0x10000000, but this

address is reserved on the Raspberry Pi

https://docs.sel4.systems/Hardware/Rpi4.html

https://docs.sel4.systems/Hardware/Rpi4.html

259/15/23

Automated Deployment

Created a build script that compiles seL4 and all of its dependencies

• apt installs <all dependencies>
• Builds the bootloader: U-boot
• Patches the kernel with a required patch
• Compiles the kernel and an example HelloWorld program
• Creates an sdcard image containing the bootloader, compiled kernel, and

configuration files

The copyright pending hardware independent seL4 build system will be available
~November 2023 on the Los Alamos National Laboratory GitHub.

“Software Verification and seL4: Implementing Untrusted Code in a Trusted Environment”, B. Lara, June 12, 2023

269/15/23

Overview

Boot
ProcessBackground CAmkES

Verification Rust Lessons
Learned

New
Project

279/15/23

seL4 CAmkES Component Framework

• Framework aimed at embedded and cyber-physical systems, which typically
have a static architecture
− Defined set of components that don’t change once the system is booted up.

• The CAmkES system is specified in a formal architecture description language
(ADL), which describes the components, their interfaces and the connectors
that link them up.

• The promise of CAmkES is that what is specified in the ADL, is a faithful
representation of possible interactions.

• The promise depends on enforcement by seL4 and the ADL representation
must be mapped onto the seL4 low-level objects.

https://docs.sel4.systems/projects/camkes/manual.html

289/15/23

Assumptions

The seL4 Microkernel - An Introduction (Rev. 1.2 of 2020-06-10)
− Note: At the time of writing, the proofs about CAmkES and CapDL are not yet

complete, but completion should not be far off.

The L4.verified Proofs
− Camkes: an initial formalisation of the CAmkES component platform on seL4.

Work in progress.

https://sel4.systems/About/seL4-whitepaper.pdf
https://github.com/seL4/l4v

299/15/23

adder.camkes
/*
* Copyright 2017, Data61, CSIRO (ABN 41 687 119 230)
*
* SPDX-License-Identifier: BSD-2-Clause
*/

import <std_connector.camkes>;

import "components/Adder/Adder.camkes";
import "components/Client/Client.camkes";

assembly {
composition {
component Adder adder;
component Client client;

connection seL4SharedData s(from adder.d, to client.d);
connection seL4RPCCall p(from client.a, to adder.a);
}

}
https://github.com/seL4/camkes/tree/master/apps/adder

309/15/23

Overview

Boot
ProcessBackground CAmkES

Verification Rust Lessons
Learned

New
Project

319/15/23

Extending the Verification

• The protocol converter application was written in Rust
− Chosen for safety guarantees built into the programming language design

▪ Example: Rust prevents entire classes of memory vulnerabilities by design (e.g. buffer
overflows, use after free, data races).

• Rust
− Uses a borrow checking and lifetime scheme to guarantee memory safety
− Does not protect against things like:

 if (a < b) vs if (a <= b)

“Memory-Safety Challenge Considered Solved? An In-Depth Study with All Rust CVEs” Hui Xu, Zhuangbin Chen, Mingshen Sun, Yangfan Zhou, Michael Lyu, “Software Verification and seL4: Implementing Untrusted Code in a Trusted Environment”, B.
Lara, June 12, 2023

329/15/23

seL4 and Rust

• seL4 Rust webpage
− “The rust support that this page talks about is no longer supported”.

• Other projects
− Some involved writing the CapDL initialization step.

https://docs.sel4.systems/projects/rust/

339/15/23

seL4 and Rust

• Both Rust and C compile to assembly binaries
− These binaries are the same.

• Issue
− The standard library contains operating system specific system calls.

• Plan
− Write Rust without any use of the standard library, by using the assembly.

“Software Verification and seL4: Implementing Untrusted Code in a Trusted Environment”, B. Lara, June 12, 2023

349/15/23

The Embedded Rust Book

• A no_std Rust Environment
− In bare metal environments, no code has been loaded before your program (does

not load the standard library).
− It then depends on the hardware, your crates and program to run.

• A little Rust with your C
− #[no_mangle]

▪ The Rust compiler normally mangles symbol names differently than native code linkers
expect.

▪ Any function that is exported by Rust needs to be told not to be mangled by the compiler.

“Software Verification and seL4: Implementing Untrusted Code in a Trusted Environment”, B. Lara, June 12, 2023

https://docs.rust-embedded.org/book/intro/no-std.html
https://docs.rust-embedded.org/book/interoperability/rust-with-c.html

359/15/23

Compile and Link

• Was able to compile this Rust code with the following command
− cargo build –target aarch64-unknown-none

• Was able to link Rust by specifying in CMake that the Rust binary was a static
library.
− This links the Rust assembly into our C assembly.

“Software Verification and seL4: Implementing Untrusted Code in a Trusted Environment”, B. Lara, June 12, 2023

369/15/23

Assumptions

The Proof
• Assembly: the seL4 kernel, like all operating system kernels, contains some

assembly code, about 340 lines of ARM assembly in our case, and a similar
amount for the RISCV64 version. For seL4, this concerns mainly entry to and
exit from the kernel, as well as direct hardware accesses. For the proof, we
assume this code is correct.

https://sel4.systems/Info/FAQ/proof.pml

379/15/23

Overview

Boot
ProcessBackground CAmkES

Verification Rust Lessons
Learned

New
Project

389/15/23

Lessons Learned

• What are the security impacts of interactions between formally verified and
unverified components?

• What is the overhead of developing, deploying and integrating seL4 into
existing systems?

• Can the security guarantees be extended to user space programs without
using a VM?
− Can seL4 run safer languages than C (e.g., Rust, Haskell, Java)?

	Formally Stepping Into The Unverified World
	Overview
	Background: Previous Project
	Background: SCADA Protocol Gateway
	Motivation
	Motivation
	Software Shortcomings can Introduce Cyber Vulnerabilities
	Background: SCADA Protocol Gateway
	Overview
	New Project - Expand the Security Envelope
	New Project - Expand the Security Envelope
	Assumptions
	Questions
	Objective - Setup Test Environment, Experience
	Objective - Setup Test Environment, Experience
	Getting Started
	Getting Started
	Getting Started
	Getting Started
	seL4 Documentation
	Overview
	Booting on seL4 Hardware
	Assumptions
	Supported Platform - Raspberry Pi 4 Model B
	Automated Deployment
	Overview
	seL4 CAmkES Component Framework
	Assumptions
	adder.camkes
	Overview
	Extending the Verification
	seL4 and Rust
	seL4 and Rust
	The Embedded Rust Book
	Compile and Link
	Assumptions
	Overview
	Lessons Learned

