V Vv aV?

What's verified, what's not, and what does it mean?

‘ June Andronick

https://sel4.systems/Foundation

Overview ©)seld]

"the most verified microkernel" = irue, but requires careful handling to ensure appropriate expectations and valid claims

() selL4’s verification is its key differentiator
We should celebrate and promote
the high-assurance Inappropriate claims will damage selL4 reputation
that seL4 and seL4-based systems provide and could have serious consequences in real systems
o _/
(")

It is also important to ensure understanding of:
® what exactly is proved
@ the conditions under which the proofs hold
® what they imply in practice

_ J

Overview ©)szld

In|t|a||sat|on

Confldent|al|ty

Isabelle ‘ Isabelle
e . SpeC|f|cat|on
"the most verified microkernel"
. Isabelle
4) _
We should celebrate and promote —
the high-assurance gec l . Isabelle/SMT/HOL4
that seL4 and seL4-based systems provide c—
\ _/
4 _ _ _) Formal, machine-checked proof
It is also important to ensure understanding of: the seL4 binary is correct with respect to spec
@ what exactly is proved and enforces isolation
@ the conditions under which the proofs hold
® what they imply in practice

G /

Overview ©)seld]

1. | have downloaded selL4 = | have a verified kernel

‘
l

My system enforces

2 My system is built on a
" isolation and is verified

verified seL4 configuration

\
I

3. Verified — 0 bugs

‘
l

formal, machine-checked proof

4. “Verified” — of strong properties down to the
binary
?— —*

Overview ©)seld]

- Not all seL4
1. I have downloaded selL4 *» | have a verified kernel configurations are verified
O — ————— I — T —

My system enforces

2 My system is built on a N
" verified seL4 configuration isolation and is verified
7 —*
3. Verified — 0 bugs
1 — ——————————
formal, machine-checked proof
4. “Verified” = of strong properties down to the
binary
1 — T ——n

Overview ©)seld]

*’ | have a verified kernel ~ Notallsel4
configurations are verified

P —

1. | have downloaded selL4

‘
l

2 My system is built on a My system enforces System design and
" verified seL4 configuration * isolation and is verified initialisation is key

B ——

\
I

3. Verified — 0 bugs

‘
l

formal, machine-checked proof
4. “Verified” — of strong properties down to the
binary

\
l

Overview ©)szld

- Not all seL4
1. I have downloaded selL4 *» | have a verified kernel configurations are verified
2 My system is built on a My system enforces System design and
" verified seL4 configuration * isolation and is verified initialisation is key

- Proofs have assumptions
3. Verified % 0 bugs and scope

formal, machine-checked proof
4. “Verified” — of strong properties down to the
binary

\
I

Overview ©)szld

- Not all seL4
1. I have downloaded selL4 *» | have a verified kernel configurations are verified
2 My system is built on a My system enforces System design and
" verified seL4 configuration * isolation and is verified initialisation is key

Proofs have assumptions

3. Verified % 0 bugs and scope

‘
1
1

formal, machine-checked proof :
4. e rge 1 ; . h Beware of claims from
Verified *} of strong progienrgsf down to the other systems
R — ————

Know which configurations are verified

e Not all seL.4
1. 1 have downloaded selL4 % | have a verified kernel configurations are verified

Arm 64 o]]

non-MCS Arm /I.") RISC-V

64- blt

selL4-vanilla
seL4-MCS

x86 64-bit

UNICORE MULTICORE

L 'ﬂ))) A —

What's verified, what's not, and what does it mean? June Andronick 10

Know which configurations are verified “sels

1. I have downloaded selL4 % Not all seL4

| have a verified kernel configurations are verified

T — P e —————

Verified Configurations ARM

This page describes which architecture/platform/configuration File ARM_verified.cmake
combinations of seL4 have verified properties, which configurations
o e possess which properties, and how to obtain an seL4 version for a Architecture ARMv7
specified configuration.
Platform iMX.6 (e.g. Sabre Lite)
At this time, verification of seL4 remains a more time-intensive process
than software development. Consequently, while selL4 has been ported to Floating-
O\ SeL4 Verlfled Conflguratlons X r’nultlple architectures, and its bund. §ystem e'xllows'further conflgurat'lon of point No
internal and hardware features, verified configurations are necessarily support
both less numerous and more specific.
Hypervisor
These configurations are also referred to as verification platforms, mode No
Google Search I'm Feeling Lucky currently constituting: AARCH64, ARM, ARM_HYP, X64, RISCV64,
ARM_MCS, RISCV64_MCS functional correctness incl fast path, integrity
Please consult Frequently Asked Questions, as well as the proof and LGz Sccess control), °°nf'de"t'a'l'lty (II:\ff.O;mCatIOZﬂOW),
assumptions page [# for a better understanding of the intersection of e e e e
- level system initialisation
verification and selL 4.
— ——— T— —

What's verified, what's not, and what does it mean? June Andronick 11

Design and initialise your system correctly

2 My system is built on a My system enforces System design and
verified selL4 configuration % isolation and is verified initialisation is key

| —— T— —

non-critical,

T W\ untrusted
00 @

hardware

What's verified, what's not, and what does it mean? June Andronick

12

Design and initialise your system correctly

2 My system is built on a My system enforces System design and
verified selL4 configuration % isolation and is verified initialisation is key

M S

Componentise, Isolate, Prove

’ @ @ non-critical,
S

policy Correct trusted untrusted
components
Correct Kernel enforces
initialisation the policy

What's verified, what's not, and what does it mean? June Andronick

13

Know the scope and assumptions of the proofs

- Proofs have assumptions
3. Verified * 0 bugs and scope

What are the proof assumptions?
Google

The brief version is: we assume that the few lines of in-kernel assembly code are
correct, hardware behaves correctly, in-kernel hardware management (TLB and

o sel4d faq X caches) is correct, and boot code is correct. The hardware model assumes DMA to
be off or to be trusted. The security proofs additionally give a list of conditions how

the system is configured.

Google Search I'm Feeling Luck . _— :
St e e For a more in-depth description, see the proof and assumptions page [#.

L —

What's verified, what's not, and what does it mean? June Andronick

.

Know the scope and assumptions of the proofs Al

What do these assumptions mean?

The reduced proof assumptions mean that we do not need to trust the compiler or linker, but there may still be

What we prove

Formal proofs can be tricky. They prove exactly what you have stated, not necessarily what you mean or what

you want.
Our proof statement in high-level natural languagt

The binary code of the ARM and RISCV64
implement the behaviour described in its
Furthermore, the specification and the se
called integrity and confidentiality.

Integrity means that data cannot be changed witk
be read without permission.

Our proof even goes one step further and shows 1
certain degree. So-called information side channe
information inference channels that are present ir
kernel storage channels, but excludes timing char

Note that this proof statement is much stronger t
2009, we had only proved functional correctness |
we have additionally shown binary correctness, th
have shown that the specification indeed implies

As with all proofs, there are still assumptions that
expectations on kernel behaviour that are not cap
degree of strong evidence for security and correc
kernel and is currently unrivalled.

10—

What we assume

With a proof in formal logic, it is important to understand what its basic assumptions are, because
where fault can still occur. Our proof about the seL4 microkernel goes down to the level of the bina

« Assembly: the seL4 kernel, like all operating system kernels, contains some assembly code

lines of ARM assembly in our case, and a similar amount for the RISCV64 version. For selL4,*
concerns mainly entry to and exit from the kernel, as well as direct hardware accesses. For tl
assume this code is correct.

Hardware: we assume the hardware works correctly. In practice, this means the hardware i
not to be tampered with, and working according to specification. It also means, it must be ru
operating conditions.

Hardware management: the proof makes only the most minimal assumptions on the un¢
hardware. It abstracts from cache consistency, cache colouring and TLB (translation lookasi
management. The proof assumes these functions are implemented correctly in the assembl
mentioned above and that the hardware works as advertised. The proof also assumes that e
these three hardware management functions do not have any effect on the behaviour of the
is true if they are used correctly.

Boot code: the proof currently is about the operation of the kernel after it has been loaded
into memory and brought into a consistent, minimal initial state. This leaves out about 1,200
code base that a kernel programmer would usually consider to be part of the kernel.

Virtual memory: under the standard of 'normal’ formal verification projects, virtual memor
need to be considered an assumption of this proof. However, the degree of assurance is low:
other parts of our proof where we reason from first principle. In more detail, virtual memory i
hardware mechanism that the kernel uses to protect itself from user programs and user prog
each other. This part is fully verified. However, virtual memory introduces a complication, bet
affect how the kernel itself accesses memory. Our execution model assumes a certain stanc
behaviour of memory while the kernel executes, and we justify this assumption by proving th
conditions on kernel behaviour. The thing is: you have to trust us that we got al/ necessary cc
and that we got them right. Our machine-checked proof doesn't force us to be complete at th
short, in this part of the proof, unlike the other parts, there is potential for human error.
DMA: we assume that the CPU and MMU are the only devices that access memory directly.
can correctly ignore memory-mapped registers of devices, but has to assume that DMA devi
either not present or do not misbehave, for instance by overwriting the kernel. In practise this
that while normal user-level drivers cannot break kernel security, drivers for DMA enabled de!
and must be formally verified for the proof to carry over. We have current work underway to €
assumption using the SystemMMU on ARM.

Information side-channels: this assumption applies to the confidentiality proof only anc
present for functional correctness or integrity. The assumption is that the binary-level model
hardware captures all relevant information channels. We know this not to be the case. This i¢
problem for the validity of the confidentiality proof, but means that its conclusion (that secre
leak) holds only for the channels visible in the model. This is a standard situation in informat
proofs: they can never be absolute. As mentioned above, in practice the proof covers all in-ke
channels but does not cover timing channels

Note that we do not need to trust the compiler and linker any more. Their output is formally verifiec
an automatic tool if the kernel is compiled with moderate optimisation levels. The same proof for r
aggressive optimisations is under development.

I —

_—

——

What's verified, what's not, and what does it mean?

faults remaining in specific low-level parts of the kernel (TLB, cache handling, handwritten assembly, boot
code). These parts are thoroughly manually reviewed.

We have made these assumptions to fit into the carefully limited scope and the limited resources of a major
research project. These specific assumptions are not a limitation of the general formal verification approach.
In theory, it is possible to eliminate all of them: there are at least two prominent research groups that have
demonstrated successful formal verification of assembly code and low-level hardware management functions

and we have ourselves proved an earlier version
executable specification. There are still significe
framework, but it is clear at this point that it can

With all the purity and strength of mathematical
theoretical limit of formal verification: there will
physical world left and these assumptions have
long as it talks about formal concepts. It is whe
Albert Einstein is quoted as saying "As far as thi
as far as they are certain, they do not refer to re;
randomly changes memory, the correctness pre
tests or verification methods help against cosm
mathematical proof, there are no absolute guar:

There are two other assumptions that we do no

o We assume the axioms of higher-order lo/
« We assume our prover checks this partict

The first is a fundamental question of formal log
bigger problem than one verified OS kernel. The

From security properties down to C code, we us
so-called LCF family of provers and is engineere
correct. In particular, it supports external proof ¢
absolute guarantee that the proof is correct, but
proofs, computers are very good at checking th
about the proof, be worried about the assumptic
problems.

From C code to binary code, we employ a set of
SONOLAR, Z3, Isabelle/HOL, and HOL4. The cor
assurance for this last verification step and wor

What the proof implies

We have already covered the properties that are proved directly: functional correctness, integrity, and
confidentiality. These are high-level properties that every OS should provide, that very few manage to provide,
and that no OS has better evidence for than selL4.

The formal proof of functional correctness implies the absence of whole classes of common programming
errors. Provided our assumptions above are true, some of these excluded common errors are:

Buffer overflows: buffer overflows are a classic security attack against operating systems, trying to
make the software crash or even to inject malicious code into the cycle. We have proved that no such
attack can be successful on selL4.

Null pointer dereferences: null pointer dereferences are another common issue in the C
programming language. In applications they tend to lead to strange error messages and lost data. In
operating systems they will usually crash the whole system. They do not occur in seL4.

Pointer errors in general: in C it is possible to accidentally use a pointer to the wrong type of data.
This is acommon programming error. It does not happen in the seL4 kernel.

Memory leaks: memory leaks occur when memory is requested, but never given back. The other
direction is even worse: memory could be given back, even though it is still in use. Neither of these can
happen in seL4.

Arithmetic overflows and exceptions: humans and mathematics usually have a concept of
numbers that can be arbitrarily big. Machines do not, they need to fit them into memory, usually into 32
or 64 bits worth of storage. Machines also generate exceptions when you attempt to do things that are
undefined like dividing by zero. In the 0S, such exceptions would typically crash the machine. This does
not occur in selL4.

Undefined behaviour: there are many static analysis and verification tools that check for the absence
of undefined behaviour in C. Our proof explicitly checks that no such undefined behaviour occurs.

The list goes on. There are other techniques that can also be used to find some of these errors. Here, the
absence of such bugs is just a useful by-product of the proof. To be able to complete our proof of functional
correctness, we also prove a large number of so-called invariants: properties that we know to always be true
when the kernel runs. To normal people these will not be exciting, but to experts and kernel programmers they
give an immense amount of useful information. They give you the reasons why and how data structures work,
why it is OK to optimise and leave out certain checks (because you know they will be always be true), and why
the code always executes in a defined and safe manner.

June Andronick

L —— P

15

The term “verified” is overloaded out there @

formal, machine-checked proof Beware of claims from
4. “Verified” of strong properties down to the
% binary other systems
I — ———————— — ————
A — Access control and
B { Information flow
Static Full functional
analysis correctness
“no division 4 “all possible
» behaviours are as
by 0

expected in the
Assumptions specification”

selL4 has proofs of
v FC and security

=L down to binary! strength of
- —» properties

°FOUNDATIONI

"the most verified microkernel"

(-)

We should celebrate and promote
the high-assurance

that seL4 and selL4-based systems provide

o J
(")

It is also important to ensure understanding of:
® what exactly is proved

@ the conditions under which the proofs hold
® what they imply in practice

_ J

3

Summary FOUNDATION
. Know what proofs hold
1. I have downloaded selL4 *» | have a verified kernel for the configuration you have
10— T 1 — —
2 My system is built on a My system enforces Design and initialise your system correctly
verified selL4 configuration * isolation and is verified (and verify critical components)

g Know the scope and assumptions of the proofs for
3. Verified % 0 bugs your configuration and what they mean for your

0 —) T — e ——
4. “erified” % (‘;?g{'rg'r’l ma%higﬁ;ggeé%erc]l ,f’or ?ﬁ(‘; Beware of other uses of “verified”.
erie gp Ft;inary seL4 has proofs of FC and security down to binary!

Google

O, selL4 FAQ

Google Search

I'm Feeling Lucky

°FOUNDATIONI

¢ What is formal verification?

o

o

What does sel4’s formal verification mean?

Does selL4 have zero bugs?

Is seL4 proved secure?

If | run seL4, is my system secure?

What are the proof assumptions?

How do | leverage selL4’s formal proofs?

Have OS kernels not been verified before?

When and how often does selL4 get updated and re-proved?

How do | tell which code in GitHub is covered by the proof and which isn’t?

