

FerrOS
Experience Report

Zack Pierce
 Corporation

Zack Pierce
– Reliable, distributed systems

Auxon Corporation
– Tools that solve problems rather than defer them
– Focus on cyber-physical

SERIOUS

pragmatic

SERIOUS
● Strong memory isolation for operational units
● Identify and handle all sources of fallibility in software
● Software unit isolation for fault localization
● Integrate with industrial software tooling
● Operate on low-powered devices
● Formally verified for all the things

SERIOUS
● Strong memory isolation for operational units
● Identify and handle all sources of fallibility in software
● Software unit isolation for fault localization
● Integrate with industrial software tooling
● Operate on low-powered devices
● Formally verified for all the things

● Work alongside black-box software from third
party vendors

● Handle custom device and virtual memory
mapping schemes

● Guarantee no runtime memory allocation failures
● Deployable to moderately esoteric platforms

SERIOUS
● Strong memory isolation for operational units
● Identify and handle all sources of fallibility in software
● Software unit isolation for fault localization
● Integrate with industrial software tooling
● Operate on low-powered devices
● Formally verified for all the things

● Work alongside black-box software from third
party vendors

● Handle custom device and virtual memory
mapping schemes

● Guarantee no runtime memory allocation failures
● Deployable to moderately esoteric platforms

● Rapid startup from cold beginning
● Component requirements made explicit in

contracts for development unit coordination
● Detect or prevent distribution of inaccessible

resources to unpriveleged components
● Auditable internal communication graph

pragmatic
● Cheap

pragmatic
● Cheap developers

– Formal verification skills not required
– Divine C skills not required

● Effective development process
– Doesn’t bog down in unnecessary work

FerrOS Wins!
● Align seL4 capabilities with functionality

● Never run out of [your resource here]

● Compose isolated, interacting processes

● Integrate with dev-friendly tooling

Agenda
● Foundation

● How did FerrOS get those wins?

● Tradeoffs

Foundation
● Rust
● selfe

– selfe-sys
– selfe-config (and selfe executable)
– selfe-arc

● Open Source

FerrOS Wins!

Align seL4 capabilities with functionality

Align seL4 capabilities with functionality

● Autocomplete support for capability functions
● Compile-time overwrite checks for capabilities
● Hide capability pointer address math

● Autocomplete support for capability functions
● Compile-time overwrite checks for capabilities
● Hide capability pointer address math

Align seL4 capabilities with functionality

Compile time error!

let x: PageTable = …;

x.signal();

Compilation success.

let x: Notification = …;

x.signal();

Align seL4 capabilities with functionality
seL4_Untyped_Retype(
 service_cptr,
 sel4_type_id,
 size_bits,
 dest_cptr,
 index,
 depth,
 dest_offset,
 1,
)

let x: ThreadControlBlock =
untyped.retype(c_slot);

Align seL4 capabilities with functionality

struct Cap<CapType, CNodeRole> {
 cptr: usize,
 cap_data: CapType,
 _role: PhantomData<CNodeRole>
}

Never run out of [your resource here]*

* at runtime

Never run out of [memory]

let ut: Cap<Untyped<11, _>, >> = …;

let (ut_a, ut_b) = ut.split();
// They’re both Untyped<10, _>

let tcb = ut_a.retype(cslot_a);

let other_thing = ut_b.retype(cslot_b);

Never run out of [capability slots]

let slots: CNodeSlots<22, Local> = ...;

let (slot_a, leftover_slots) = slots.alloc();
// Now leftover_slots = CNodeSlots<21, >

let useful = untyped.retype(slot_a);

Never run out of [ASID Pool space]

let (unassigned_asid, remaining_pool) =
asid_pool.alloc();

// unassigned_asid holds type UnassignedASID

let assigned_asid: Cap<AssignedASID> =
unassigned_asid.assign(&paging_root);

Compose isolated, interacting processes

● IPC made easy and safe

● Thread and process startup

● Process-embedding and loading

Compose isolated, interacting processes

Compose isolated, interacting processes
let (tx_maker, rx) =

call_channel(ut, root_cnode,
slots, rx_slot)?;

let caller = tx_maker.create_caller(slot);

let response: YourResponse =
caller.blocking_call(&MyFancyStruct {…})?;

● Tree-like thread and process creation

● Start processes with strongly typed parameters

● Organize sending capabilities accessible from the
child process

Compose isolated, interacting processes

Compose isolated, interacting processes
pub struct ProcParams<Role> {
 pub uart: UART1,

 pub int_consumer: InterruptConsumer<uart1::Irq, Role>,

 pub storage_caller: Caller<
 persistent_storage::Request,
 Result<persistent_storage::Response, persistent_storage::ErrorCode>,
 Role>,

 pub udp_producer: Producer<Role, IpcUdpTransmitBuffer>,
}

// In the process binary (main.rs)
pub fn _start(params: ProcParams<role::Local>) -> ! {
 // Do the work of the process here, using the provided params
}

Integrate with dev-friendly tooling

● Lean on extant Cargo ecosystem and idioms
● ferros-build utility library

– Delegate to selfe-arc for embedding
– ELF FTW

●

● No separate specification languages or markup required

Integrate with dev-friendly tooling

Agenda
● Foundation

● How did FerrOS get those wins?

● Tradeoffs

Trade-offs

let (c, a) = a.do(b);
let (d, a) = a.go(q);

…

Macros!

Trade-offs
 Typenum math slows down compilation

Patience
Smaller code units

Hope for core support for more const math

Trade-offs

Seriously strong mode can be rigid

Weak-mode utilities
Could be more consistently symmetrical

FerrOS Wins!
● Align seL4 capabilities with functionality

● Never run out of [your resource here]

● Compose isolated, interacting processes

● Integrate with dev-friendly tooling

FerrOS
Experience Report

Jon Lamb
Russ Mull

Zack Pierce
Dan Pittman

@ Auxon Corporation

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

