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– Reliable, distributed systems

Auxon Corporation
– Tools that solve problems rather than defer them
– Focus on cyber-physical
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● Operate on low-powered devices
● Formally verified for all the things
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SERIOUS
● Strong memory isolation for operational units
● Identify and handle all sources of fallibility in software
● Software unit isolation for fault localization
● Integrate with industrial software tooling
● Operate on low-powered devices
● Formally verified for all the things

● Work alongside black-box software from third 
party vendors

● Handle custom device and virtual memory 
mapping schemes

● Guarantee no runtime memory allocation failures
● Deployable to moderately esoteric platforms

● Rapid startup from cold beginning
● Component requirements made explicit in 

contracts for development unit coordination
● Detect or prevent distribution of inaccessible 

resources to unpriveleged components
● Auditable internal communication graph



  

pragmatic
● Cheap



  

pragmatic
● Cheap developers

– Formal verification skills not required
– Divine C skills not required

● Effective development process
– Doesn’t bog down in unnecessary work



  

FerrOS Wins!
● Align seL4 capabilities with functionality

● Never run out of [your resource here]

● Compose isolated, interacting processes

● Integrate with dev-friendly tooling



  

Agenda
● Foundation

● How did FerrOS get those wins?

● Tradeoffs



  

Foundation
● Rust
● selfe

– selfe-sys
– selfe-config (and selfe executable)
– selfe-arc

● Open Source
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Align seL4 capabilities with functionality

Compile time error!

let x: PageTable = …;

x.signal();

Compilation success.

let x: Notification = …;

x.signal();



  

Align seL4 capabilities with functionality
seL4_Untyped_Retype(
    service_cptr,
    sel4_type_id,
    size_bits,
    dest_cptr,
    index,
    depth,
    dest_offset,
    1,
)

let x: ThreadControlBlock = 
untyped.retype(c_slot);



  

Align seL4 capabilities with functionality

struct Cap<CapType, CNodeRole> {
    cptr: usize,
    cap_data: CapType,
    _role: PhantomData<CNodeRole>
}



  

Never run out of [your resource here]*

* at runtime



  

Never run out of [memory]

let ut: Cap<Untyped<11, _>, >> = …;

let (ut_a, ut_b) = ut.split();
// They’re both Untyped<10, _>

let tcb = ut_a.retype(cslot_a);

let other_thing = ut_b.retype(cslot_b);



  

Never run out of [capability slots]

let slots: CNodeSlots<22, Local> = ...;

let (slot_a, leftover_slots) = slots.alloc();
// Now leftover_slots = CNodeSlots<21, >

let useful = untyped.retype(slot_a);



  

Never run out of [ASID Pool space]

let (unassigned_asid, remaining_pool) =
asid_pool.alloc();

// unassigned_asid holds type UnassignedASID

let assigned_asid: Cap<AssignedASID> = 
unassigned_asid.assign(&paging_root);



  

Compose isolated, interacting processes



  

● IPC made easy and safe

● Thread and process startup

● Process-embedding and loading 

Compose isolated, interacting processes



  

Compose isolated, interacting processes
let (tx_maker, rx) = 

call_channel(ut, root_cnode, 
slots, rx_slot )?;

let caller = tx_maker.create_caller(slot);

let response: YourResponse = 
caller.blocking_call(&MyFancyStruct {…})?;



  

● Tree-like thread and process creation

● Start processes with strongly typed parameters

● Organize sending capabilities accessible from the 
child process 

Compose isolated, interacting processes



  

Compose isolated, interacting processes
pub struct ProcParams<Role> {
    pub uart: UART1,

    pub int_consumer: InterruptConsumer<uart1::Irq, Role>,

    pub storage_caller: Caller<
        persistent_storage::Request,
        Result<persistent_storage::Response, persistent_storage::ErrorCode>,
        Role>,

    pub udp_producer: Producer<Role, IpcUdpTransmitBuffer>,
}

// In the process binary (main.rs)
pub fn _start(params: ProcParams<role::Local>) -> ! {
    // Do the work of the process here, using the provided params
}



  

Integrate with dev-friendly tooling



  

● Lean on extant Cargo ecosystem and idioms
● ferros-build utility library

– Delegate to selfe-arc for embedding
– ELF FTW

●

● No separate specification languages or markup required 

Integrate with dev-friendly tooling



  

Agenda
● Foundation

● How did FerrOS get those wins?

● Tradeoffs



  

Trade-offs

let (c, a) = a.do(b);
let (d, a) = a.go(q);

…

Macros!



  

Trade-offs
 Typenum math slows down compilation

Patience
Smaller code units

Hope for core support for more const math



  

Trade-offs

Seriously strong mode can be rigid

Weak-mode utilities
Could be more consistently symmetrical



  

FerrOS Wins!
● Align seL4 capabilities with functionality

● Never run out of [your resource here]

● Compose isolated, interacting processes

● Integrate with dev-friendly tooling
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