
Introduction Background The Architecture Verification Conclusion

A Formal Architecture for Trustworthy Remote Attestation

Grant Jurgensen1 Adam Petz2 Perry Alexander2

1Kestrel Institute
grant@kestrel.edu

2Institute for Information Sciences
The University of Kansas

{ampetz, palexand}@ku.edu

mailto:grant@kestrel.edu
mailto:ampetz@ku.edu
mailto:palexand@ku.edu

Introduction Background The Architecture Verification Conclusion

Outline

Introduction

Background
Copland

The Architecture
Design

Verification

Conclusion

Introduction Background The Architecture Verification Conclusion

Definitions

• Attestation: the process in which some party provides evidence of its state and/or
identity to another party to establish trust

• Appraisal: the analysis of attestation evidence resulting in a trust judgment
• Kinds of attestation

1. Local attestation
2. Remote attestation

Introduction Background The Architecture Verification Conclusion

Attestation and Verification

• Verification produces stronger results, but may be prohibitively time-consuming

• Attestation frequently relies on probabilitic evidence, but is more easily applied

• Attestation and verification are complimentary approaches.

Introduction Background The Architecture Verification Conclusion

Goals

1. Design and prototype implementation of a system architecture for trustworthy
remote attestation

2. Formal specification and verification of the attestation architecture

Introduction Background The Architecture Verification Conclusion

Copland Definition

• Copland1 is a domain-specific language (DSL) for attestation protocols

• Protocols are executed with respect to some initial evidence, and produce further
evidence

t ::= a | @p [t] | t -> t | t ~ t | . . .

a ::= nameasp p nametarg | ! | . . .

Figure: An abridged grammar of the Copland protocol language. The t rule defines a top-level
protocol term. p represents a place. nameX is an identifier corresponding to an external
measurement service (X = asp) or target of measurement(X = targ).

1https://ku-sldg.github.io/copland/

https://ku-sldg.github.io/copland/

Introduction Background The Architecture Verification Conclusion

Copland Examples

Remote attestation

@p1 [(hashFile p1 "/etc/passwd ") -> !]

Cross-domain attestation

@p2 [(hashFile p1 "/etc/passwd ") -> !]

Mixed attestation

@p1 [@p2 [(attest p1 hashFile) -> !] ->

(hashFile p1 "/etc/passwd ") -> !]

Introduction Background The Architecture Verification Conclusion

Design Goals

1. Guarantee confidentiality of private keys and integrity of measurements

2. Accommodate a variety of existing systems

Challenges

A separation kernel would provide optimal integrity. However, it would not
accommodate as much existing software as would a general purpose OS.

Introduction Background The Architecture Verification Conclusion

Design

Linux VM

Target

UserAM Appraiser

seL4

PlatformAM

Figure: The attestation architecture. Red dashed arrows represent measurement. Blue arrows
represent incoming Copland attestation requests. Green arrows represent outgoing Copland
evidence.

Introduction Background The Architecture Verification Conclusion

Implementation Details

• Verified components: CakeML compiler, HACL* cryptographic primitives, formal
Copland specification

• Communication
• Inter-VM communication occurs over a static CAmkES dataport. A kernel module

provides a file-like interface to Linux userspace.

• Privileges
• CAmkES components are assigned static privileges over communication channels.
• Communication from the Linux environment is protected only by regular file access

controls.

Introduction Background The Architecture Verification Conclusion

Key Release

• Keys are released to AM over the course of system boot to avoid starting a
compromised AM with the confidential key.

• Lower layers release keys to higher layers after sufficient measurement.

• The lowest level layer either starts with its key, or it may be derived from some
hardware root-of-trust.

Introduction Background The Architecture Verification Conclusion

Verification

• We formally model2 the abstract, component-level design of the system in Coq

• We embed CTL3 and prove temporal properties

2https://github.com/ku-sldg/attarch-model/tree/thesis
3https://github.com/ku-sldg/CTL/tree/thesis

https://github.com/ku-sldg/attarch-model/tree/thesis
https://github.com/ku-sldg/CTL/tree/thesis

Introduction Background The Architecture Verification Conclusion

Conclusion

• Future work
• Incorporate robust measurements into PlatformAM
• Apply architecture to system with a hardware root of trust
• Improve CTL proof automation

	Introduction
	Background
	Copland

	The Architecture
	Design

	Verification
	Conclusion

