
1

QEMU as
 prototyping platform

for seL4 systems

Axel Heider, HENSOLDT Cyber

seL4 summit, 2022-10-10

2

Why QEMU?

 Works well for things running above the hardware abstraction layer

 Simplifies cross-platform development

 Reasonably deterministic or fast (choose one)

 Scales nicely for CI pipelines

 Available to everybody

 No hardware instrumentation needed, no “hick-ups“

 No debug/trace hardware needed

3

Things to keep in mind

 Works at instruction level (or “translation block” level) only
 not cycle accurate, no simulation for pipeline
 no caches, no write buffer

 Simplified Hardware simulation
 registers might be dummies
 no FIFOs, no accurate I/O timing

 Documentation could be better
 FOSDEM2018: Finding your way through the QEMU parameter jungle
 Xilinx QEMU fork

 Version Numbering
 Release every 4 months (April, August, December)
 2018-08 is v3.0 (not v2.13), since v4.0 (2019-04) a major release every year

4

Usage of QEMU in seL4 CI

 seL4test
 ia32/x86_64

 PC99 (Nehalem)
 ARMv7

 SABRE (sabrelite)
 ZYNQ7000 (xilinx-zynq-a9)

 ARMv8
 ARMVIRT (virt)

 RISC-V
 SPIKE32 (build for “spike”, running on “virt”)
 SPIKE64 (spike)

 camkes-vm
 ARMv8 (virt) for vm_minimal example

5

seL4test on QEMU

 Cache tests are disabled, fail because there is no cache
 One failing scheduler test disabled, seems a test implementation issue
 Timer tests disabled

 “sabrelite”: QEMU mainline still misses EPIT timer fix
 “xilinx-zynq-a9”: unstable? Seems to work in QEMU v7.1
 “virt” has no timer peripheral (the RTC can’t be used)

 Other working platforms
 ARMv7 “virt“ (no timer)
 ARMv8 “xlnx-zcu102“ (timer test fail due to frequency settings)

 Dead simulation platforms

– „raspi3“: seL4 does not boot. Anybody?

6

Which QEMU to use?

 Whatever works best for what you actually want...
 For TRENTOS CI:

– „sabrelite“

• QEMU with EPIT fix

• native drivers for NIC and SD-Card

– „xilinx-zynq-a9“

• adding native NIC support still on ToDo list

• Simulate NICs via TRENTOS “ChanMux” → UART → TestFramework → TAPs

– „virt-sel4“

• … work in progress as unified solution for ARM and RISC-V

7

 Customization
 Started from RISC-V “spike” platform code base

 Adapt memory configuration
 2 RAM areas, 1 ROM area, 1 Flash area
 trap writes to ROM area, init via image

 Rebased to sifive board emulation
 PLIC support
 Replace spike’s HTIF console by a “real” UART
 Add UARTs for I/O channel, add timer peripherals

 allows MiG-V specific development without FPGA/Board access
 Bootloader/SBI/Loader
 ROM version of seL4
 Tooling/Workflow for system deployment

QEMU to simulate our MiG-V SoC

8

QEMU virt platform (RISC-V, ARM)

 Why stick to a board emulation actually?

 Configure via “-machine virt[,…],dumpdtb=<fielname> -cpu <name> ...“

– ARM: GICv2/3/4, SMMUv3, Virtualization, TrustZone …

– RISC-V: (A)PLIC, (A)CLINT ….

– See “-machine virt,help“ and “-cpu help” or details

 seL4 build workflow

– Invoke seL4 build system with seL4 config params

– Build QEMU config and extract device tree

– Build seL4 system against with that device tree

– Use „simulate“ script to run seL4 system on QEMU with this configuration

9

QEMU “virt“ pitfalls

 Fimware dependencies

– aarch64/virt needs "efi-virtio.rom"

• package “ipxe-qemu“ is not enforced for “qemu-system-arm“

• Use dummy file, or “-nic none“?

– riscv/virt wants "opensbi-riscv64-generic-fw_dynamic.bin"

• use „--bios <seL4 image>“ in QEMU v5.x and higher

• (fix search paths)
 Hard-coded assumptions in seL4:

– VMM: drop “GIC_IRQ_PHANDLE“ and parse DTS instead

– Boot: Check passed DTB matches device tree used when building

10

Custom QEMU with “virt-sel4“

 Extend „virt“ to have a generic, seL4-friendly development platform

– Motivation: run all VM examples on “arm-virt”

 Add peripherals:

– timers for userland (SP804 on ARM)

– serial ports for simple I/O channels (PL011 on ARM)

 Add a seL4 aware tracepoint backend

– replace the “debug log trace”

– Inspired by “My other machine is virtual” (Linaro Connect YVR18-118)

 Add QEMU binaries to existing docker container

– Upstreaming to extend “virt” seems unlikely

11

What’s next?

 Consider other emulators – Renode?

This document and its content is the property of HENSOLDT Cyber GmbH. It shall not be communicated to any third party without the owner’s written consent. © Copyright HENSOLDT Cyber GmbH 2020. All rights reserved.

Axel Heider

axel.heider@hensoldt.net

HENSOLDT Cyber GmbH
Willy-Messerschmitt-Straße 3
82024 Taufkirchen
www.hensoldt-cyber.com

13

QEMU built-in tracing

● -d <option,option...> -D <logfile>
● in_asm show assembly (one for each compiled TB, “-singelstep“)

No longer works in v7.1, just says “OBJD-T: 73c23f91“
requires building QEMU with libcapstone support to see “add x19, x19, #0xff0”

● int show interrupts/exceptions
● exec show each executed TB (and the CPU ID)

Trace <CPU-ID>: <tb> [<tb->tc.ptr>/<pc>/<tb-flags>/<tb-flags>] <symbol>

● nochain don’t chain compiled TBs
● tid new in v7.1, separate logs per CPU (use „-D logfile-%d“)

● cpu show CPU registers before entering a TB
● unimp log unimplemented functionality
● guest_errors log invalid operations

● -dfilter <range>[,<range>...]:
● Log for a certain range only
● “<start>…<end>”, “<start>+<size>”, “<start>-<size>“

14

Making QEMU more deterministic

 “-icount shift=N“
 CPU executes one TB every 2^N ns of virtual time.
 Give a deterministic (virtual) timer
 Implicitly disables MTTCG

 SMP
 MT-TCG (Multi Thread Tiny Code Generator) since V2.9 (2017)
 CPUs runs as separate threads
 Disable with “--accel tcg,thread=single“

 Back to Round robin, one TB at a time
 Need “-singelstep“ for single-instruction TBs

15

Getting things into QEMU

 Via “--kernel <elf>”
 also load symbols, shown in traces
 Change in v5.1 for RISC-V

 “--bios <elf>” for M-Mode
 “--kernel“ start in S-Mode with bundled OpenSBI firmware image

 ...or complains "opensbi-riscv64-generic-fw.bin" is missing

 “--device loader,…“
 load binary or ELF (with symbols):

”...file=<file>[,addr=<addr>][,force-raw=<raw>]“

 Set Memory:

”...addr=<addr>,data=<data>,data-len=<data-len>
 [,data-be=true]“

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

