
1

QEMU as
 prototyping platform

for seL4 systems

Axel Heider, HENSOLDT Cyber

seL4 summit, 2022-10-10

2

Why QEMU?

 Works well for things running above the hardware abstraction layer

 Simplifies cross-platform development

 Reasonably deterministic or fast (choose one)

 Scales nicely for CI pipelines

 Available to everybody

 No hardware instrumentation needed, no “hick-ups“

 No debug/trace hardware needed

3

Things to keep in mind

 Works at instruction level (or “translation block” level) only
 not cycle accurate, no simulation for pipeline
 no caches, no write buffer

 Simplified Hardware simulation
 registers might be dummies
 no FIFOs, no accurate I/O timing

 Documentation could be better
 FOSDEM2018: Finding your way through the QEMU parameter jungle
 Xilinx QEMU fork

 Version Numbering
 Release every 4 months (April, August, December)
 2018-08 is v3.0 (not v2.13), since v4.0 (2019-04) a major release every year

4

Usage of QEMU in seL4 CI

 seL4test
 ia32/x86_64

 PC99 (Nehalem)
 ARMv7

 SABRE (sabrelite)
 ZYNQ7000 (xilinx-zynq-a9)

 ARMv8
 ARMVIRT (virt)

 RISC-V
 SPIKE32 (build for “spike”, running on “virt”)
 SPIKE64 (spike)

 camkes-vm
 ARMv8 (virt) for vm_minimal example

5

seL4test on QEMU

 Cache tests are disabled, fail because there is no cache
 One failing scheduler test disabled, seems a test implementation issue
 Timer tests disabled

 “sabrelite”: QEMU mainline still misses EPIT timer fix
 “xilinx-zynq-a9”: unstable? Seems to work in QEMU v7.1
 “virt” has no timer peripheral (the RTC can’t be used)

 Other working platforms
 ARMv7 “virt“ (no timer)
 ARMv8 “xlnx-zcu102“ (timer test fail due to frequency settings)

 Dead simulation platforms

– „raspi3“: seL4 does not boot. Anybody?

6

Which QEMU to use?

 Whatever works best for what you actually want...
 For TRENTOS CI:

– „sabrelite“

• QEMU with EPIT fix

• native drivers for NIC and SD-Card

– „xilinx-zynq-a9“

• adding native NIC support still on ToDo list

• Simulate NICs via TRENTOS “ChanMux” → UART → TestFramework → TAPs

– „virt-sel4“

• … work in progress as unified solution for ARM and RISC-V

7

 Customization
 Started from RISC-V “spike” platform code base

 Adapt memory configuration
 2 RAM areas, 1 ROM area, 1 Flash area
 trap writes to ROM area, init via image

 Rebased to sifive board emulation
 PLIC support
 Replace spike’s HTIF console by a “real” UART
 Add UARTs for I/O channel, add timer peripherals

 allows MiG-V specific development without FPGA/Board access
 Bootloader/SBI/Loader
 ROM version of seL4
 Tooling/Workflow for system deployment

QEMU to simulate our MiG-V SoC

8

QEMU virt platform (RISC-V, ARM)

 Why stick to a board emulation actually?

 Configure via “-machine virt[,…],dumpdtb=<fielname> -cpu <name> ...“

– ARM: GICv2/3/4, SMMUv3, Virtualization, TrustZone …

– RISC-V: (A)PLIC, (A)CLINT ….

– See “-machine virt,help“ and “-cpu help” or details

 seL4 build workflow

– Invoke seL4 build system with seL4 config params

– Build QEMU config and extract device tree

– Build seL4 system against with that device tree

– Use „simulate“ script to run seL4 system on QEMU with this configuration

9

QEMU “virt“ pitfalls

 Fimware dependencies

– aarch64/virt needs "efi-virtio.rom"

• package “ipxe-qemu“ is not enforced for “qemu-system-arm“

• Use dummy file, or “-nic none“?

– riscv/virt wants "opensbi-riscv64-generic-fw_dynamic.bin"

• use „--bios <seL4 image>“ in QEMU v5.x and higher

• (fix search paths)
 Hard-coded assumptions in seL4:

– VMM: drop “GIC_IRQ_PHANDLE“ and parse DTS instead

– Boot: Check passed DTB matches device tree used when building

10

Custom QEMU with “virt-sel4“

 Extend „virt“ to have a generic, seL4-friendly development platform

– Motivation: run all VM examples on “arm-virt”

 Add peripherals:

– timers for userland (SP804 on ARM)

– serial ports for simple I/O channels (PL011 on ARM)

 Add a seL4 aware tracepoint backend

– replace the “debug log trace”

– Inspired by “My other machine is virtual” (Linaro Connect YVR18-118)

 Add QEMU binaries to existing docker container

– Upstreaming to extend “virt” seems unlikely

11

What’s next?

 Consider other emulators – Renode?

This document and its content is the property of HENSOLDT Cyber GmbH. It shall not be communicated to any third party without the owner’s written consent. © Copyright HENSOLDT Cyber GmbH 2020. All rights reserved.

Axel Heider

axel.heider@hensoldt.net

HENSOLDT Cyber GmbH
Willy-Messerschmitt-Straße 3
82024 Taufkirchen
www.hensoldt-cyber.com

13

QEMU built-in tracing

● -d <option,option...> -D <logfile>
● in_asm show assembly (one for each compiled TB, “-singelstep“)

No longer works in v7.1, just says “OBJD-T: 73c23f91“
requires building QEMU with libcapstone support to see “add x19, x19, #0xff0”

● int show interrupts/exceptions
● exec show each executed TB (and the CPU ID)

Trace <CPU-ID>: <tb> [<tb->tc.ptr>/<pc>/<tb-flags>/<tb-flags>] <symbol>

● nochain don’t chain compiled TBs
● tid new in v7.1, separate logs per CPU (use „-D logfile-%d“)

● cpu show CPU registers before entering a TB
● unimp log unimplemented functionality
● guest_errors log invalid operations

● -dfilter <range>[,<range>...]:
● Log for a certain range only
● “<start>…<end>”, “<start>+<size>”, “<start>-<size>“

14

Making QEMU more deterministic

 “-icount shift=N“
 CPU executes one TB every 2^N ns of virtual time.
 Give a deterministic (virtual) timer
 Implicitly disables MTTCG

 SMP
 MT-TCG (Multi Thread Tiny Code Generator) since V2.9 (2017)
 CPUs runs as separate threads
 Disable with “--accel tcg,thread=single“

 Back to Round robin, one TB at a time
 Need “-singelstep“ for single-instruction TBs

15

Getting things into QEMU

 Via “--kernel <elf>”
 also load symbols, shown in traces
 Change in v5.1 for RISC-V

 “--bios <elf>” for M-Mode
 “--kernel“ start in S-Mode with bundled OpenSBI firmware image

 ...or complains "opensbi-riscv64-generic-fw.bin" is missing

 “--device loader,…“
 load binary or ELF (with symbols):

”...file=<file>[,addr=<addr>][,force-raw=<raw>]“

 Set Memory:

”...addr=<addr>,data=<data>,data-len=<data-len>
 [,data-be=true]“

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

