
Data61 Trustworthy Systems
https://ts.data61.csiro.au/projects/TS/

seL4 Reference Manual
Version 5.0.0

Trustworthy Systems Team, Data61
https://sel4.systems/contact/

31 March 2017

https://ts.data61.csiro.au/projects/TS/
https://sel4.systems/contact/

c© 2017 General Dynamics C4 Systems.

All rights reserved.

Acknowledgements

The primary authors of this document are Matthew Grosvenor and Adam Walker,
with contributions from Adrian Danis, Andrew Boyton, David Greenaway, Etienne
Le Sueur, Gernot Heiser, Gerwin Klein, Godfrey van der Linden, Kevin Elphinstone,
Matthew Fernandez, Matthias Daum, Michael von Tessin, Peter Chubb, Simon Win-
wood, Thomas Sewell, Timothy Bourke and Toby Murray. All authors and contributors
can be contacted at firstname.lastname@data61.csiro.au.

Contents

1 Introduction 1

2 Kernel Services and Objects 2

2.1 Capability-based Access Control . 2

2.2 System Calls . 3

2.3 Kernel Objects . 5

2.4 Kernel Memory Allocation . 6

2.4.1 Reusing Memory . 7

2.4.2 Summary of Object Sizes . 8

3 Capability Spaces 10

3.1 Capability and CSpace Management . 11

3.1.1 CSpace Creation . 11

3.1.2 CNode Methods . 11

3.1.3 Capabilities to Newly-Retyped Objects 12

3.1.4 Capability Rights . 12

3.1.5 Capability Derivation Tree . 12

3.2 Deletion and Revocation . 14

3.3 CSpace Addressing . 15

3.3.1 Capability Address Lookup . 15

3.3.2 Addressing Capabilities . 16

3.4 Lookup Failure Description . 18

3.4.1 Invalid Root . 18

3.4.2 Missing Capability . 18

3.4.3 Depth Mismatch . 18

3.4.4 Guard Mismatch . 19

1

2 CONTENTS

4 Message Passing (IPC) 20

4.1 Message Registers . 20

4.2 Endpoints . 22

4.2.1 Endpoint Badges . 22

4.2.2 Capability Transfer . 22

4.2.3 Errors . 23

5 Notifications 24

5.1 Notification Objects . 24

5.2 Signalling, Polling and Waiting . 24

5.3 Binding Notifications . 25

6 Threads and Execution 26

6.1 Threads . 26

6.1.1 Thread Creation . 26

6.1.2 Thread Deactivation . 26

6.1.3 Scheduling . 27

6.1.4 Exceptions . 27

6.1.5 Message Layout of the Read-/Write-Registers Methods 27

6.2 Faults . 28

6.2.1 Capability Faults . 28

6.2.2 Unknown Syscall . 29

6.2.3 User Exception . 30

6.2.4 Debug Exception: Breakpoints and Watchpoints 31

6.2.5 Debug Exception: Single-stepping 32

6.2.6 VM Fault . 33

6.3 Domains . 33

7 Address Spaces and Virtual Memory 35

7.1 Overview . 35

7.2 Objects . 36

7.3 Mapping Attributes . 37

7.4 Sharing Memory . 38

7.5 Page Faults . 38

CONTENTS 3

8 Hardware I/O 39

8.1 Interrupt Delivery . 39

8.2 IA-32-Specific I/O . 40

8.2.1 Interrupts . 40

8.2.2 I/O Ports . 40

8.2.3 I/O Space . 40

9 System Bootstrapping 42

9.1 Initial Thread’s Environment . 42

9.2 BootInfo Frame . 43

9.3 Boot Command-line Arguments . 45

10 seL4 API Reference 46

10.1 Error Codes . 46

10.1.1 Invalid Argument . 46

10.1.2 Invalid Capability . 46

10.1.3 Illegal Operation . 46

10.1.4 Range Error . 47

10.1.5 Alignment Error . 47

10.1.6 Failed Lookup . 47

10.1.7 Delete First . 47

10.1.8 Revoke First . 47

10.1.9 Not Enough Memory . 48

10.2 System Calls . 48

10.2.1 Send . 48

10.2.2 Recv . 48

10.2.3 Call . 49

10.2.4 Reply . 49

10.2.5 Polling Send . 49

10.2.6 Reply Recv . 50

10.2.7 NBRecv . 50

10.2.8 Yield . 51

10.2.9 Signal . 51

10.2.10 Wait . 52

4 CONTENTS

10.2.11 Poll . 52

10.3 Architecture-Independent Object Methods 53

10.3.1 CNode - Cancel Badged Sends 53

10.3.2 CNode - Copy . 54

10.3.3 CNode - Delete . 55

10.3.4 CNode - Mint . 56

10.3.5 CNode - Move . 57

10.3.6 CNode - Mutate . 58

10.3.7 CNode - Revoke . 59

10.3.8 CNode - Rotate . 60

10.3.9 CNode - Save Caller . 61

10.3.10 Domain Set - Set . 61

10.3.11 IRQ Control - Get . 62

10.3.12 IRQ Handler - Acknowledge . 62

10.3.13 IRQ Handler - Clear . 63

10.3.14 IRQ Handler - Set Notification 63

10.3.15 TCB - Bind Notification . 64

10.3.16 TCB - Configure Single Stepping 65

10.3.17 TCB - Configure . 66

10.3.18 TCB - Copy Registers . 67

10.3.19 TCB - Get Breakpoint . 68

10.3.20 TCB - Read Registers . 69

10.3.21 TCB - Resume . 69

10.3.22 TCB - Set Breakpoint . 70

10.3.23 TCB - Set CPU Affinity . 71

10.3.24 TCB - Set IPC Buffer . 71

10.3.25 TCB - Set Maximum Controlled Priority 72

10.3.26 TCB - Set Priority . 72

10.3.27 TCB - Set Space . 73

10.3.28 TCB - Suspend . 73

10.3.29 TCB - Unbind Notification . 74

10.3.30 TCB - Unset Breakpoint . 74

10.3.31 TCB - Write Registers . 75

CONTENTS 5

10.3.32 Untyped - Retype . 76

10.4 IA-32-Specific Object Methods . 77

10.4.1 IA32 ASID Control - Make Pool 77

10.4.2 IA32 ASID Pool - Assign . 77

10.4.3 IA32 IO Port - In 8 . 78

10.4.4 IA32 IO Port - In 16 . 78

10.4.5 IA32 IO Port - In 32 . 78

10.4.6 IA32 IO Port - Out 8 . 79

10.4.7 IA32 IO Port - Out 16 . 79

10.4.8 IA32 IO Port - Out 32 . 80

10.4.9 IA32 IO Page Table - Map . 80

10.4.10 IA32 Page - Map IO . 81

10.4.11 IA32 Page - Map . 81

10.4.12 IA32 Page - Remap . 82

10.4.13 IA32 Page - Unmap . 82

10.4.14 IA32 Page - Get Address . 83

10.4.15 IA32 Page Table - Map . 83

10.4.16 IA32 Page Table - Unmap . 84

10.4.17 X86 Page Directory - Get Status Bits 84

10.4.18 IRQ Control - GetIOAPIC . 85

10.4.19 IRQ Control - GetMSI . 86

10.5 ARM-Specific Object Methods . 87

10.5.1 ARM ASID Control - Make Pool 87

10.5.2 ARM ASID Pool - Assign . 87

10.5.3 ARM Page - Clean Data . 88

10.5.4 ARM Page - Invalidate Data . 88

10.5.5 ARM Page - Clean and Invalidate Data 89

10.5.6 ARM Page - Unify Instruction Cache 89

10.5.7 ARM Page - Map . 90

10.5.8 ARM Page - Remap . 90

10.5.9 ARM Page - Unmap . 91

10.5.10 ARM Page - Get Address . 91

10.5.11 ARM Page Table - Map . 92

6 CONTENTS

10.5.12 ARM Page Table - Unmap . 92

List of Tables

2.1 Platform-independent object sizes. 8

2.2 IA-32-specific object sizes. 9

2.3 ARM-specific object sizes. 9

3.1 seL4 access rights. 12

3.2 Capability derivation. 13

4.1 Physical register allocation for IPC messages on the x86 architecture. . 20

4.2 Physical register allocation for IPC messages on the ARM architecture. 21

4.3 Fields of the seL4 IPCBuffer structure. Note that badges and caps

use the same area of memory in the structure. 21

6.1 Contents of an IPC message. 29

6.2 Unknown system call outcome on the ARM architecture. 29

6.3 Unknown system call outcome on the IA-32 architecture. 30

6.4 User exception outcome on the ARM architecture. 30

6.5 User exception outcome on the IA-32 architecture. 31

6.6 Debug fault message layout. The register API-ID is not returned in the
fault message from the kernel on single-step faults. 32

6.7 Single-step fault message layout. 33

6.8 VM Fault outcome on the ARM architecture. 33

6.9 VM fault outcome on the IA-32 architecture. 33

7.1 Virtual memory attributes for ARM page table entries. 37

7.2 Virtual memory attributes for IA32 page table entries. 38

9.1 Initial thread’s CNode content. 42

9.2 BootInfo struct. 43

9.3 BootInfoHeader struct. 44

7

8 LIST OF TABLES

9.4 seL4 UntypedDesc struct . 45

9.5 IA-32 boot command-line arguments. 45

List of Figures

3.1 Example capability derivation tree. 13

3.2 An example CSpace demonstrating object references at all levels, various
guard and radix sizes and internal CNode references. 16

3.3 An arbitrary CSpace layout. 17

9

10 LIST OF FIGURES

Chapter 1

Introduction

The seL4 microkernel is an operating-system kernel designed to be a secure, safe, and
reliable foundation for systems in a wide variety of application domains. As a microker-
nel, it provides a small number of services to applications, such as abstractions to create
and manage virtual address spaces, threads, and inter-process communication (IPC).
The small number of services provided by seL4 directly translates to a small imple-
mentation of approximately 8700 lines of C code. This has allowed the ARMv6 version
of the kernel to be formally proven in the Isabelle/HOL theorem prover to adhere to
its formal specification [Boy09,CKS08,DEK+06,EKE08,KEH+09,TKN07,WKS+09],
which in turn enabled proofs of the kernel’s enforcement of integrity [SWG+11] and
confidentiality [MMB+13]. The kernel’s small size was also instrumental in performing
a complete and sound analysis of worst-case execution time [BSC+11,BSH12].

This manual describes the seL4 kernel’s API from a user’s point of view. The document
starts by giving a brief overview of the seL4 microkernel design, followed by a reference
of the high-level API exposed by the seL4 kernel to userspace.

While we have tried to ensure that this manual accurately reflects the behaviour of the
seL4 kernel, this document is by no means a formal specification of the kernel. When
the precise behaviour of the kernel under a particular circumstance needs to be known,
users should refer to the seL4 abstract specification, which gives a formal description
of the seL4 kernel.

1

Chapter 2

Kernel Services and Objects

A limited number of service primitives are provided by the microkernel; more complex
services may be implemented as applications on top of these primitives. In this way, the
functionality of the system can be extended without increasing the code and complexity
in privileged mode, while still supporting a potentially wide number of services for
varied application domains.

The basic services seL4 provides are as follows:

Threads are an abstraction of CPU execution that supports running software;

Address spaces are virtual memory spaces that each contain an application. Appli-
cations are limited to accessing memory in their address space;

Inter-process communication (IPC) via endpoints allows threads to communicate
using message passing;

Notifications provide a non-blocking signalling mechanism similar to binary semaphores;

Device primitives allow device drivers to be implemented as unprivileged applica-
tions. The kernel exports hardware device interrupts via IPC messages; and

Capability spaces store capabilities (i.e., access rights) to kernel services along with
their book-keeping information.

This chapter gives an overview of these services, describes how kernel objects are
accessed by userspace applications, and describes how new objects can be created.

2.1 Capability-based Access Control

The seL4 microkernel provides a capability-based access-control model. Access control
governs all kernel services; in order to perform an operation, an application must invoke
a capability in its possession that has sufficient access rights for the requested service.
With this, the system can be configured to isolate software components from each
other, and also to enable authorised, controlled communication between components

2

2.2. SYSTEM CALLS 3

by selectively granting specific communication capabilities. This enables software-
component isolation with a high degree of assurance, as only those operations explicitly
authorised by capability possession are permitted.

A capability is an unforgeable token that references a specific kernel object (such as
a thread control block) and carries access rights that control what methods may be
invoked. Conceptually, a capability resides in an application’s capability space; an
address in this space refers to a slot which may or may not contain a capability. An
application may refer to a capability—to request a kernel service, for example—using
the address of the slot holding that capability. This means, the seL4 capability model
is an instance of a segregated (or partitioned) capability system, where capabilities are
managed by the kernel.

Capability spaces are implemented as a directed graph of kernel-managed capability
nodes (CNodes). A CNode is a table of slots, where each slot may contain further CNode

capabilities. An address of a capability in a capability space is the concatenation of
the indices of slots within CNodes forming the path to the destination slot; we discuss
CNode objects in detail in Chapter 3.

Capabilities can be copied and moved within capability spaces, and also sent via IPC.
This allows creation of applications with specific access rights, the delegation of au-
thority to another application, and passing to an application authority to a newly
created (or selected) kernel service. Furthermore, capabilities can be minted to create
a derived capability with a subset of the rights of the original capability (never with
more rights). A newly minted capability can be used for partial delegation of authority.

Capabilities can also be revoked to withdraw authority. Revocation recursively removes
any capabilities that have been derived from the original capability being revoked.
The propagation of capabilities through the system is controlled by a take-grant-based
model [EKE08,Boy09].

2.2 System Calls

The seL4 kernel provides a message-passing service for communication between threads.
This mechanism is also used for communication with kernel-provided services. There
is a standard message format, each message containing a number of data words and
possibly some capabilities. The structure and encoding of these messages are described
in detail in Chapter 4.

Threads send messages by invoking capabilities within their capability space. When
an endpoint capability is invoked in this way, the message will be transferred through
the kernel to another thread. When capabilities to kernel objects are invoked, the
message will be interpreted as a method invocation in a manner specific to the type of
kernel object. For example, invoking a thread control block (TCB) capability with a
correctly formatted message will suspend the target thread.

Logically, the kernel provides three system calls, Send, Receive and Yield. However,
there are also combinations and variants of the basic Send and Receive calls, e.g. the
Call operation, which consists of a send followed by a Receive from the same object.
Methods on kernel objects other than endpoints and notifications are all mapped to

4 CHAPTER 2. KERNEL SERVICES AND OBJECTS

Send or Call, depending on whether or not the method returns a result. The Yield
system call is not associated with any kernel object and is the only operation that does
not invoke a capability.

The complete set of system calls is:

seL4 Send() delivers a message through the named capability and the application to
continue. If the invoked capability is an endpoint, and no receiver is ready to
receive the message immediately, the sending thread will block until the message
can be delivered. No error code or response will be returned by the receiving
object.

seL4 NBSend() performs a polling send on an endpoint. It is similar to seL4 Send(),
except that it is guaranteed not to block. If the message cannot be delivered
immediately, i.e. there is no receiver waiting on the destination Endpoint, the
message is silently dropped. Like seL4 Send(), no error code or response will be
returned.

seL4 Call() combines seL4 Send() and seL4 Recv(). The call blocks the sending
thread until its message is delivered and a reply message is received. When the
sent message is delivered to another thread (via an Endpoint), the kernel adds
an additional ‘reply ’ capability to the message that is delivered to the receiver,
giving the latter the right to reply to the original sender. The reply capability
is deposited in a dedicated slot in the receiver’s TCB, and is a single-use right,
meaning that the kernel invalidates it as soon as it has been invoked.

The seL4 Call() operation exists not only for efficiency reasons (combining two
operations into a single system call). It differs from seL4 Send() immediately
followed by seL4 Recv() in two ways:

1. the single-use reply capability is created to establish a reply channel with
minimal trust;

2. the transition from send to recv phase is atomic, meaning it cannot be
preempted, and the receiver can reply without any risk of blocking.

When invoking capabilities to kernel services, using seL4 Call() allows the ker-
nel to return an error code or other response through the reply message.

seL4 Recv() is used by a thread to receive messages through endpoints or notifica-
tions. If no sender or notification is pending, the caller will block until a message
or notification can be delivered. This system call works only on Endpoint or No-

tification capabilities, raising a fault (see section 6.2) when attempted with other
capability types.

seL4 Reply() is used to respond to a seL4 Call(), using the reply capability gener-
ated by the seL4 Call() system call and stored in the replying thread’s TCB.
It delivers the message to the thread that invoked the seL4 Call(), waking it in
the process.

There is space for only one reply capability in each thread’s TCB, so the seL4 -

Reply() syscall can be used to reply to the most recent caller only. The seL4 -

CNode SaveCaller() method that will be described later can be used to save

2.3. KERNEL OBJECTS 5

the reply capability into regular capability space, where it can be used with
seL4 Send().

seL4 ReplyRecv() combines seL4 Reply() and seL4 Recv(). It exists mostly for
efficiency reasons: the common case of replying to a request and waiting for
the next can be performed in a single kernel system call instead of two. The
transition from the reply to the receive phase is also atomic.

seL4 NBRecv() is used by a thread to check for signals pending on a notification object
or messages pending on an endpoint without blocking. This system call works
only on endpoints and notification object capabilities, raising a fault (see section
6.2) when attempted with other capability types.

seL4 Yield() is the only system call that does not require a capability to be used.
It forfeits the remainder of the calling thread’s timeslice and causes invocation
of the kernel’s scheduler. If there are no other runnable threads with the same
priority as the caller, the calling thread will immediately be scheduled with a
fresh timeslice.

2.3 Kernel Objects

In this section we give a brief overview of the kernel-implemented object types whose
instances (also simply called objects) can be invoked by applications. The interface to
these objects forms the interface to the kernel itself. The creation and use of kernel
services is achieved by the creation, manipulation, and combination of these kernel
objects:

CNodes (see Chapter 3) store capabilities, giving threads permission to invoke methods
on particular objects. Each CNode has a fixed number of slots, always a power
of two, determined when the CNode is created. Slots can be empty or contain a
capability.

Thread Control Blocks (TCBs; see Chapter 6) represent a thread of execution in
seL4. Threads are the unit of execution that is scheduled, blocked, unblocked,
etc., depending on the application’s interaction with other threads.

Endpoints (see Chapter 4) facilitate message-passing communication between threads.
IPC is synchronous: A thread trying to send or receive on an endpoint blocks until
the message can be delivered. This means that message delivery only happens
if a sender and a receiver rendezvous at the endpoint, and the kernel can deliver
the message with a single copy (or without copying for short messages using only
registers).

A capability to an endpoint can be restricted to be send-only or receive-only.
Additionally, Endpoint capabilities can have the grant right, which allows sending
capabilities as part of the message.

Notification Objects (see Chapter 5) provide a simple signalling mechanism. A Notifi-

cation is a word-size array of flags, each of which behaves like a binary semaphore.
Operations are signalling a subset of flags in a single operation, polling to check

6 CHAPTER 2. KERNEL SERVICES AND OBJECTS

any flags, and blocking until any are signalled. Notification capabilities can be
signal-only or wait-only.

Virtual Address Space Objects (see Chapter 7) are used to construct a virtual
address space (or VSpace) for one or more threads. These objects largely directly
correspond to those of the hardware, and as such are architecture-dependent. The
kernel also includes ASID Pool and ASID Control objects for tracking the status of
address spaces.

Interrupt Objects (see Chapter 8) give applications the ability to receive and ac-
knowledge interrupts from hardware devices. Initially, there is a capability to
IRQControl, which allows for the creation of IRQHandler capabilities. An IRQHandler

capability permits the management of a specific interrupt source associated with
a specific device. It is delegated to a device driver to access an interrupt source.
The IRQHandler object allows threads to wait for and acknowledge individual
interrupts.

Untyped Memory (see Section 2.4) is the foundation of memory allocation in the
seL4 kernel. Untyped memory capabilities have a single method which allows
the creation of new kernel objects. If the method succeeds, the calling thread
gains access to capabilities to the newly-created objects. Additionally, untyped
memory objects can be divided into a group of smaller untyped memory objects
allowing delegation of part (or all) of the system’s memory. We discuss memory
management in general in the following sections.

2.4 Kernel Memory Allocation

The seL4 microkernel does not dynamically allocate memory for kernel objects. In-
stead, objects must be explicitly created from application-controlled memory regions
via Untyped Memory capabilities. Applications must have explicit authority to memory
(through these Untyped Memory capabilities) in order to create new objects, and all
objects consume a fixed amount of memory once created. These mechanisms can be
used to precisely control the specific amount of physical memory available to appli-
cations, including being able to enforce isolation of physical memory access between
applications or a device. There are no arbitrary resource limits in the kernel apart from
those dictated by the hardware1, and so many denial-of-service attacks via resource
exhaustion are avoided.

At boot time, seL4 pre-allocates the memory required for the kernel itself, including the
code, data, and stack sections (seL4 is a single kernel-stack operating system). It then
creates an initial user thread (with an appropriate address and capability space). The
kernel then hands all remaining memory to the initial thread in the form of capabilities
to Untyped Memory, and some additional capabilities to kernel objects that were required
to bootstrap the initial thread. These Untyped Memory regions can then be split into
smaller regions or other kernel objects using the seL4 Untyped Retype() method; the
created objects are termed children of the original untyped memory object.

1The treatment of virtual ASIDs imposes a fixed number of address spaces. This limitation is to
be removed in future versions of seL4.

2.4. KERNEL MEMORY ALLOCATION 7

The user-level application that creates an object using seL4 Untyped Retype() re-
ceives full authority over the resulting object. It can then delegate all or part of the
authority it possesses over this object to one or more of its clients.

Untyped memory objects represent two different types of memory: general purpose
memory, or device memory. General purpose memory can be untyped into any other
object type and used for any operation on untyped memory provided by the kernel.
Device memory covers memory regions reserved for devices as determined by the hard-
ware platform, and usage of these objects is restricted by the kernel in the following
ways:

• Device untyped objects can only be retyped into frames or other untyped objects;
developers cannot, for example, create an endpoint from device memory.

• Frame objects retyped from device untyped objects cannot be set as thread IPC
buffers, or used in the creation of an ASID pool

The type attribute (whether it represents general purpose or device memory) of a child
untyped object is inherited from its parent untyped object. That is, any child of a
device untyped will also be a device untyped. Developers cannot change the type
attribute of an untyped.

2.4.1 Reusing Memory

The model described thus far is sufficient for applications to allocate kernel objects,
distribute authority among client applications, and obtain various kernel services pro-
vided by these objects. This alone is sufficient for a simple static system configuration.

The seL4 kernel also allows Untyped Memory regions to be reused. Reusing a region
of memory is allowed only when there are no dangling references (i.e., capabilities)
left to the objects inside that memory. The kernel tracks capability derivations, i.e.,
the children generated by the methods seL4 Untyped Retype(), seL4 CNode Mint(),
seL4 CNode Copy(), and seL4 CNode Mutate().

The tree structure so generated is termed the capability derivation tree (CDT).2 For
example, when a user creates new kernel objects by retyping untyped memory, the
newly created capabilities would be inserted into the CDT as children of the untyped
memory capability.

For each Untyped Memory region, the kernel keeps a watermark recording how much
of the region has previously been allocated. Whenever a user requests the kernel to
create new objects in an untyped memory region, the kernel will carry out one of two
actions: if there are already existing objects allocated in the region, the kernel will
allocate the new objects at the current watermark level, and increase the watermark.
If all objects previously allocated in the region have been deleted, the kernel will reset
the watermark and start allocating new objects from the beginning of the region again.

Finally, the seL4 CNode Revoke() method provided by CNode objects destroys all ca-
pabilities derived from the argument capability. Revoking the last capability to a

2Although the CDT conceptually is a separate data structure, it is implemented as part of the
CNode object and so requires no additional kernel meta-data.

8 CHAPTER 2. KERNEL SERVICES AND OBJECTS

Object Object Size

n-bit Untyped 2n bytes (where n ≥ 4)
n-bit CNode 16 ∗ 2n bytes (where n ≥ 2)
Endpoint 16 bytes
Notification 16 bytes
IRQ Control —
IRQ Handler —

Table 2.1: Platform-independent object sizes.

kernel object triggers the destroy operation on the now unreferenced object. This
simply cleans up any in-kernel dependencies between it, other objects and the kernel.

By calling seL4 CNode Revoke() on the original capability to an untyped memory
object, the user removes all of the untyped memory object’s children—that is, all
capabilities pointing to objects in the untyped memory region. Thus, after this invo-
cation there are no valid references to any object within the untyped region, and the
region may be safely retyped and reused.

2.4.2 Summary of Object Sizes

When retyping untyped memory it is useful to know how much memory the object
will require. Object sizes are summarised in Tables 2.1, 2.2 and 2.3.

Note that CNodes and Untyped Objects have variables sizes. When retyping untyped
memory into CNodes or breaking an Untyped Object into smaller Untyped Objects, the
size bits argument to seL4 Untyped Retype() is used to specify the size of the re-
sulting objects. Table 2.1 shows the correspondence between the size bits argument
(n) to seL4 Untyped Retype(), and the resulting size of each variable-sized object.

For all other object types, the size is fixed, and the size bits argument to seL4 -

Untyped Retype() is ignored.

A single call to seL4 Untyped Retype() can retype a single Untyped Object into multiple
objects. The number of objects to create is specified by its num objects argument.
All created objects must be of the same type, specified by the type argument. In the
case of variable-sized objects, each object must also be of the same size. If the size
of the memory area needed (calculated by the object size multiplied by num objects)
is greater than the remaining unallocated memory of the Untyped Object, an error will
result.

2.4. KERNEL MEMORY ALLOCATION 9

IA-32 Object Object Size

Thread Control Block 1KiB
IA32 4K Frame 4KiB
IA32 4M Frame 4MiB
IA32 Page Directory 4KiB
IA32 Page Table 4KiB
IA32 ASID Control —
IA32 ASID Pool 4KiB
IA32 Port —
IA32 IO Space —
IA32 IO Page table 4KiB

Table 2.2: IA-32-specific object sizes.

ARM Object Object Size

Thread Control Block 512 bytes
ARM Small Frame 4KiB
ARM Large Frame 64KiB
ARM Section 1MiB
ARM Supersection 16MiB
ARM Page Directory 16KiB
ARM Page Table 1KiB
ARM ASID Control —
ARM ASID Pool 4KiB

Table 2.3: ARM-specific object sizes.

Chapter 3

Capability Spaces

Recall from Section 2.1 that seL4 implements a capability-based access control model.
Each userspace thread has an associated capability space (CSpace) that contains the
capabilities that the thread possesses, thereby governing which resources the thread
can access.

Recall that capabilities reside within kernel-managed objects known as CNodes. A
CNode is a table of slots, each of which may contain a capability. This may include
capabilities to further CNodes, forming a directed graph. Conceptually a thread’s
CSpace is the portion of the directed graph that is reachable starting with the CNode

capability that is its CSpace root.

A CSpace address refers to an individual slot (in some CNode in the CSpace), which
may or may not contain a capability. Threads refer to capabilities in their CSpaces
(e.g. when making system calls) using the address of the slot that holds the capa-
bility in question. An address in a CSpace is the concatenation of the indices of the
CNode capabilities forming the path to the destination slot; we discuss this further in
Section 3.3.

Recall that capabilities can be copied and moved within CSpaces, and also sent in
messages (message sending will be described in detail in Section 4.2.2). Furthermore,
new capabilities can be minted from old ones with a subset of their rights. Recall,
from Section 2.4.1, that seL4 maintains a capability derivation tree (CDT) in which it
tracks the relationship between these copied capabilities and the originals. The revoke
method removes all capabilities (in all CSpaces) that were derived from a selected
capability. This mechanism can be used by servers to restore sole authority to an
object they have made available to clients, or by managers of untyped memory to
destroy the objects in that memory so it can be retyped.

seL4 requires the programmer to manage all in-kernel data structures, including CSpaces,
from userspace. This means that the userspace programmer is responsible for con-
structing CSpaces as well as addressing capabilities within them. This chapter first
discusses capability and CSpace management, before discussing how capabilities are
addressed within CSpaces, i.e. how applications can refer to individual capabilities
within their CSpaces when invoking methods.

10

3.1. CAPABILITY AND CSPACE MANAGEMENT 11

3.1 Capability and CSpace Management

3.1.1 CSpace Creation

CSpaces are created by creating and manipulating CNode objects. When creating a
CNode the user must specify the number of slots that it will have, and this determines
the amount of memory that it will use. Each slot requires 16 bytes of physical memory
and has the capacity to hold exactly one capability. Like any other object, a CNode must
be created by calling seL4 Untyped Retype() on an appropriate amount of untyped
memory (see Section 2.4.2). The caller must therefore have a capability to enough
untyped memory as well as enough free capability slots available in existing CNodes for
the seL4 Untyped Retype() invocation to succeed.

3.1.2 CNode Methods

Capabilities are managed largely through invoking CNode methods.

CNodes support the following methods:

seL4 CNode Mint() creates a new capability in a specified CNode slot from an existing
capability. The newly created capability may have fewer rights than the original
and a different guard (see Section 3.3.1). seL4 CNode Mint() can also create a
badged capability (see Section 4.2.1) from an unbadged one.

seL4 CNode Copy() is similar to seL4 CNode Mint(), but the newly created capability
has the same badge and guard as the original.

seL4 CNode Move() moves a capability between two specified capability slots. You
cannot move a capability to the slot in which it is currently.

seL4 CNode Mutate() can move a capability similarly to seL4 CNode Move() and also
reduce its rights similarly to seL4 CNode Mint(), although without an original
copy remaining.

seL4 CNode Rotate() moves two capabilities between three specified capability slots.
It is essentially two seL4 CNode Move() invocations: one from the second spec-
ified slot to the first, and one from the third to the second. The first and third
specified slots may be the same, in which case the capability in it is swapped
with the capability in the second slot. The method is atomic; either both or
neither capabilities are moved.

seL4 CNode Delete() removes a capability from the specified slot.

seL4 CNode Revoke() is equivalent to calling seL4 CNode Delete() on each derived
child of the specified capability. It has no effect on the capability itself, except
in very specific circumstances outlined in Section 3.2.

seL4 CNode SaveCaller() moves a kernel-generated reply capability of the current
thread from the special TCB slot it was created in, into the designated CSpace
slot.

12 CHAPTER 3. CAPABILITY SPACES

seL4 CNode CancelBadgedSends() cancels any outstanding sends that use the same
badge and object as the specified capability.

3.1.3 Capabilities to Newly-Retyped Objects

When retyping untyped memory into objects with seL4 Untyped Retype(), capabil-
ities to the newly-retyped objects are placed in consecutive slots in a CNode specified
by its root, node index, and node depth arguments. The node offset argument
specifies the index into the CNode at which the first capability will be placed. The
num objects argument specifies the number of capabilities (and, hence, objects) to
create. All slots must be empty or an error will result. All resulting capabilities will
be placed in the same CNode.

3.1.4 Capability Rights

As mentioned previously, some capability types have access rights associated with
them. Currently, access rights are associated with capabilities for Endpoints (see Chap-
ter 4), Notifications (see Chapter 5) and Pages (see Chapter 7). The access rights as-
sociated with a capability determine the methods that can be invoked. seL4 supports
three orthogonal access rights, which are Read, Write and Grant. The meaning of each
right is interpreted relative to the various object types, as detailed in Table 3.1.

When an object is first created, the initial capability that refers to it carries the
maximum set of access rights. Other, less-powerful capabilities may be manufactured
from this original capability, using methods such as seL4 CNode Mint() and seL4 -

CNode Mutate(). If a greater set of rights than the source capability is specified for the
destination capability in either of these invocations, the destination rights are silently
downgraded to those of the source.

Type Read Write Grant

Endpoint Required to receive. Required to send. Required to send ca-
pabilities (including
reply capabilities).

Notification Required to wait. Required to signal. N/A
Page Required to map the

page readable.
Required to map the
page writable.

N/A

Table 3.1: seL4 access rights.

3.1.5 Capability Derivation Tree

As mentioned in Section 2.4.1, seL4 keeps track of capability derivations in a capability
derivation tree.

Various methods, such as seL4 CNode Copy() or seL4 CNode Mint(), may be used to
create derived capabilities. Not all capabilities support derivation. In general, only
original capabilities support derivation invocations, but there are exceptions. Table 3.2

3.1. CAPABILITY AND CSPACE MANAGEMENT 13

summarises the conditions that must be met for capability derivation to succeed for
the various capability types, and how capability-derivation failures are reported in each
case. The capability types not listed can be derived once.

Cap Type Conditions for Derivation Error Code on Derivation
Failure

ReplyCap Cannot be derived Dependent on syscall
IRQControl Cannot be derived Dependent on syscall
Untyped Must not have children (Sec-

tion 3.2)
seL4 RevokeFirst

Page Table Must be mapped seL4 IllegalOperation

Page Directory Must be mapped seL4 IllegalOperation

IO Page Table (IA-32

only)

Must be mapped seL4 IllegalOperation

Table 3.2: Capability derivation.

Untyped

Untyped Untyped

Untyped

original original

derived derived derived

original
unbadged

derived
unbadged

original
badged

derived
badged

derived
badged

Endpoint

Object 2

Object 1

Figure 3.1: Example capability derivation tree.

Figure 3.1 shows an example capability derivation tree that illustrates a standard sce-
nario: the top level is a large untyped capability, the second level splits this capability
into two regions covered by their own untyped caps, both are children of the first
level. The third level on the left is a copy of the level 2 untyped capability. Untyped
capabilities when copied always create children, never siblings. In this scenario, the
untyped capability was typed into two separate objects, creating two capabilities on
level 4, both are the original capability to the respective object, both are children of
the untyped capability they were created from.

Ordinary original capabilities can have one level of derived capabilities. Further copies
of these derived capabilities will create siblings, in this case remaining on level 5. There
is an exception to this scheme for Endpoint and Notification capabilities — they support
an additional layer of depth though badging. The original Endpoint or Notification
capability will be unbadged. Using the mint method, a copy of the capability with
a specific badge can be created (see Section 4.2.1, Section 5.1). This new, badged

14 CHAPTER 3. CAPABILITY SPACES

capability to the same object is treated as an original capability (the “original badged
endpoint capability”) and supports one level of derived children like other capabilities.

3.2 Deletion and Revocation

Capabilities in seL4 can be deleted and revoked. Both methods primarily affect capa-
bilities, but they can have side effects on objects in the system where the deletion or
revocation results in the destruction of the last capability to an object.

As described above, seL4 CNode Delete() will remove a capability from the specified
CNode slot. Usually, this is all that happens. If, however, it was the last typed
capability to an object, this object will now be destroyed by the kernel, cleaning up
all remaining in-kernel references and preparing the memory for re-use.

If the object to be destroyed was a capability container, i.e. a TCB or CNode, the
destruction process will delete each capability held in the container, prior to destroying
the container. This may result in the destruction of further objects if the contained
capabilities are the last capabilities.1

The seL4 CNode Revoke() method will seL4 CNode Delete() all CDT children of the
specified capability, but will leave the capability itself intact. If any of the revoked child
capabilities were the last capabilities to an object, the appropriate destroy operation
is triggered.

Note: seL4 CNode Revoke() may only partially complete in two specific circumstances.
The first being where a CNode containing the last capability to the TCB of the thread
performing the revoke (or the last capability to the TCB itself) is deleted as a result
of the revoke. In this case the thread performing the revoke is destroyed during the
revoke and the revoke does not complete. The second circumstance is where the
storage containing the capability that is the target of the revoke is deleted as a result
of the revoke. In this case, the authority to perform the revoke is removed during the
operation and the operation stops part way through. Both these scenarios can be and
should be avoided at user-level by construction.

Note that for page tables and page directories seL4 CNode Revoke() will not revoke
frame capabilities mapped into the address space. They will only be unmapped from
the space.

1The recursion is limited as if the last capability to a CNode is found within the container, the
found CNode is not destroyed. Instead, the found CNode is made unreachable by moving the capability
pointing to the found CNode into the found cnode itself, by swapping the capability with the first
capability in the found cnode, and then trying to delete the swapped capability instead. This breaks
the recursion.

The result of this approach is that deleting the last cap to the root CNode of a CSpace does
not recursively delete the entire CSpace. Instead, it deletes the root CNode, and the branches of
the tree become unreachable, potentially including the deleting of some of the unreachable CNode’s
caps to make space for the self-referring capability. The practical consequence of this approach is that
CSpace deletion requires user-level to delete the tree leaf first if unreachable CNodes are to be avoided.
Alternatively, any resulting unreachable CNodes can be cleaned up via revoking a covering untyped
capability, however this latter approach may be more complex to arrange by construction at user-level.

3.3. CSPACE ADDRESSING 15

3.3 CSpace Addressing

When performing a system call, a thread specifies to the kernel the capability to be
invoked by giving an address in its CSpace. This address refers to the specific slot in
the caller’s CSpace that contains the capability to be invoked.

CSpaces are designed to permit sparsity, and the process of looking-up a capability
address must be efficient. Therefore, CSpaces are implemented as guarded page tables.

As explained earlier, a CSpace is a directed graph of CNode objects, and each CNode is
a table of slots, where each slot can either be empty, or contain a capability, which may
refer to another CNode. Recall from Section 2.3 that the number of slots in a CNode

must be a power of two. A CNode is said to have a radix, which is the power to which
two is raised in its size. That is, if a CNode has 2k slots, its radix would be k. The
kernel stores a capability to the root CNode of each thread’s CSpace in the thread’s
TCB. Conceptually, a CNode capability stores not only a reference to the CNode to
which it refers, but also carries a guard value, explained in Section 3.3.1.

3.3.1 Capability Address Lookup

Like a virtual memory address, a capability address is simply an integer. Rather
than referring to a location of physical memory (as does a virtual memory address),
a capability address refers to a capability slot. When looking up a capability address
presented by a userspace thread, the kernel first consults the CNode capability in the
thread’s TCB that defines the root of the thread’s CSpace. It then compares that
CNode’s guard value against the most significant bits of the capability address. If
the two values are different, lookup fails. Otherwise, the kernel then uses the next
most-significant radix bits of the capability address as an index into the CNode to
which the CNode capability refers. The slot s identified by these next radix bits might
contain another CNode capability or contain something else (including nothing). If s
contains a CNode capability c and there are remaining bits (following the radix bits)
in the capability address that have yet to be translated, the lookup process repeats,
starting from the CNode capability c and using these remaining bits of the capability
address. Otherwise, the lookup process terminates successfully; the capability address
in question refers to the capability slot s.

Figure 3.2 demonstrates a valid CSpace with the following features:

• a top level CNode object with a 12-bit guard set to 0x000 and 256 slots;

• a top level CNode with direct object references;

• a top level CNode with two second-level CNode references;

• second level CNodes with different guards and slot counts;

• a second level CNode that contains a reference to a top level CNode;

• a second level CNode that contains a reference to another CNode where there
are some bits remaining to be translated;

16 CHAPTER 3. CAPABILITY SPACES

Guard

0x00

0x0

0x00

0x000 (12 bits)

0x0 (4 bits)

0x0 (3 bits)

CNode

CNode

CNode

0xFF

0xF
CNode

CNode

Object

Object

Object

Object

Object

Object 0xFF

Guard

Guard

12 bit guard + 8 bit radix* = 20 bits
translated. 32 bit word - 20 bits = 12
bits remaining
*(2^8 = 256 slots)

4 bit guard + 8 bit radix = 12 bits
translated
32 - 20 - 12 = 0 bits remaining

CNode

3 bit guard + 4 bit radix = 7 bits
translated
32 - 20 - 7 = 5 bits remaining

Figure 3.2: An example CSpace demonstrating object references at
all levels, various guard and radix sizes and internal CNode references.

• a second level CNode that contains a reference to another CNode where there
are no bits remaining to be translated; and

• object references in the second level CNodes.

It should be noted that Figure 3.2 demonstrates only what is possible, not what is
usually practical. Although the CSpace is legal, it would be reasonably difficult to
work with due to the small number of slots and the circular references within it.

3.3.2 Addressing Capabilities

A capability address is stored in a CPointer (abbreviated CPTR), which is an un-
signed integer variable. Capabilities are addressed in accordance with the translation
algorithm described above. Two special cases involve addressing CNode capabilities
themselves and addressing a range of capability slots.

Recall that the translation algorithm described above will traverse CNode capabilities
while there are address bits remaining to be translated. Therefore, in order to address
a CNode capability, the user must supply not only a capability address but also specify
the maximum number of bits of the capability address that are to be translated, called
the depth limit.

Certain methods, such as seL4 Untyped Retype(), require the user to provide a range
of capability slots. This is done by providing a base capability address, which refers

3.3. CSPACE ADDRESSING 17

L1 CNode Cap

0x0 (4 bits)

L2 CNode Cap

Cap A

Guard

0x00

0x0F

0x60

0xFF

0x0 (4 bits)

L3 CNode Cap

Cap B

Guard

0x00

0x60

0xFF

Cap C, D, E, F, G

Guard 0 bits

0x00

0x60

0x64

0xFF

Figure 3.3: An arbitrary CSpace layout.

to the first slot in the range, together with a window size parameter, specifying the
number of slots (with consecutive addresses, following the base slot) in the range.

Figure 3.3 depicts an example CSpace. In order to illustrate these ideas, we determine
the address of each of the 10 capabilities in this CSpace.

Cap A. The first CNode has a 4-bit guard set to 0x0, and an 8-bit radix. Cap A
resides in slot 0x60 so it may be referred to by any address of the form 0x060xxxxx
(where xxxxx is any number, because the translation process terminates after
translating the first 12 bits of the address). For simplicity, we usually adopt the
address 0x06000000.

Cap B. Again, the first CNode has a 4-bit guard set to 0x0, and an 8-bit radix. The
second CNode is reached via the L2 CNode Cap. It also has a 4-bit guard of
0x0 and Cap B resides at index 0x60. Hence, Cap B’s address is 0x00F06000.
Translation of this address terminates after the first 24 bits.

Cap C. This capability is addressed via both CNodes. The third CNode is reached
via the L3 CNode Cap, which resides at index 0x00 of the second CNode. The
third CNode has no guard and Cap C is at index 0x60. Hence, its address is
0x00F00060. Translation of this address leaves 0 bits untranslated.

Caps C–G. This range of capability slots is addressed by providing a base address
(which refers to the slot containing Cap C) of 0x00F00060 and a window size of
5.

L2 CNode Cap. Recall that to address a CNode capability, the user must supply not
only a capability address but also specify the depth limit, which is the maximum
number of bits to be translated. L2 CNode Cap resides at offset 0x0F of the first
CNode, which has a 4-bit guard of 0x0. Hence, its address is 0x00F00000, with
a depth limit of 12 bits.

L3 CNode Cap. This capability resides at index 0x00 of the second CNode, which
is reached by the L2 CNode Cap. The second CNode has a 4-bit guard of 0x0.

18 CHAPTER 3. CAPABILITY SPACES

Hence, the capability’s address is 0x00F00000 with a depth limit of 24 bits. Note
that the addresses of the L2 and L3 CNode Caps are the same, but that their
depth limits are different.

In summary, to refer to any capability (or slot) in a CSpace, the user must supply its
address. When the capability might be a CNode, the user must also supply a depth
limit. To specify a range of capability slots, the user supplies a starting address and a
window size.

3.4 Lookup Failure Description

When a capability lookup fails, a description of the failure is given to either the calling
thread or the thread’s exception handler in its IPC buffer. The format of the descrip-
tion is always the same but may occur at varying offsets in the IPC buffer depending
on how the error occurred. The description format is explained below. The first word
indicates the type of lookup failure and the meaning of later words depend on this.

3.4.1 Invalid Root

A CSpace CPTR root (within which a capability was to be looked up) is invalid. For
example, the capability is not a CNode cap.

Data Meaning

Offset + 0 seL4 InvalidRoot

3.4.2 Missing Capability

A capability required for an invocation is not present or does not have sufficient rights.

Data Meaning

Offset + 0 seL4 MissingCapability

Offset + seL4 CapFault BitsLeft Bits left

3.4.3 Depth Mismatch

When resolving a capability, a CNode was traversed that resolved more bits than was
left to decode in the CPTR or a non-CNode capability was encountered while there
were still bits remaining to be looked up.

3.4. LOOKUP FAILURE DESCRIPTION 19

Data Meaning

Offset + 0 seL4 DepthMismatch

Offset + seL4 CapFault BitsLeft Bits of CPTR remaining to decode
Offset + seL4 CapFault DepthMis-

match BitsFound

Bits that the current CNode being tra-
versed resolved

3.4.4 Guard Mismatch

When resolving a capability, a CNode was traversed with a guard size larger than the
number of bits remaining or the CNode’s guard did not match the next bits of the
CPTR being resolved.

Data Meaning

Offset + 0 seL4 GuardMismatch

Offset + seL4 CapFault BitsLeft Bits of CPTR remaining to decode
Offset + seL4 CapFault GuardMis-

match GuardFound

The CNode’s guard

Offset + seL4 CapFault GuardMis-

match BitsFound

The CNode’s guard size

Chapter 4

Message Passing (IPC)

The seL4 microkernel provides a message-passing IPC mechanism for communication
between threads. The same mechanism is also used for communication with kernel-
provided services. Messages are sent by invoking a capability to a kernel object. Mes-
sages sent to Endpoints are destined for other threads, while messages sent to other
objects are processed by the kernel. This chapter describes the common message for-
mat, endpoints, and how they can be used for communication between applications.

4.1 Message Registers

Each message contains a number of message words and optionally a number of capa-
bilities. The message words are sent to or received from a thread by placing them in
its message registers. The message registers are numbered and the first few message
registers are implemented using physical CPU registers, while the rest are backed by a
fixed region of memory called the IPC buffer. The reason for this design is efficiency:
very short messages need not use the memory. The physical CPU registers used for
the message registers are described in Table 4.1 for x86 and Table 4.2 for ARM. The
IPC buffer is assigned to the calling thread (see Section 6.1 and Section 10.3.24).

Role CPU Register

Capability register (in) ebx

Badge register (out) ebx

Message tag (in/out) esi

Message register 1 (in/out) edi

Message register 2 (in/out) ebp

Table 4.1: Physical register allocation for IPC messages on the x86
architecture.

Every IPC message also has a tag (structure seL4 MessageInfo t). The tag consists of
four fields: the label, message length, number of capabilities (the extraCaps field) and
the capsUnwrapped field. The message length and number of capabilities determine
either the number of message registers and capabilities that the sending thread wishes

20

4.1. MESSAGE REGISTERS 21

Role CPU Register

Capability register (in) r0

Badge register (out) r0

Message tag (in/out) r1

Message register 1–4 (in/out) r2 – r5

Table 4.2: Physical register allocation for IPC messages on the ARM
architecture.

to transfer, or the number of message registers and capabilities that were actually
transferred. The label is not interpreted by the kernel and is passed unmodified as
the first data payload of the message. The label may, for example, be used to specify
a requested operation. The capsUnwrapped field is used only on the receive side, to
indicate the manner in which capabilities were received. It is described in Section 4.2.2.

Type Name Description

seL4 MessageInfo t tag Message tag
seL4 Word[] msg Message contents
seL4 Word userData Base address of the structure, used by

supporting user libraries
seL4 CPtr[] (in) caps Capabilities to transfer
seL4 CapData t[]

(out)
badges Badges for endpoint capabilities re-

ceived
seL4 CPtr receiveCNode CPTR to a CNode from which to find

the receive slot
seL4 CPtr receiveIndex CPTR to the receive slot relative to re-

ceiveCNode

seL4 Word receiveDepth Number of bits of receiveIndex to use

Table 4.3: Fields of the seL4 IPCBuffer structure. Note that badges
and caps use the same area of memory in the structure.

The kernel assumes that the IPC buffer contains a structure of type seL4 IPCBuffer as
defined in Table 4.3. The kernel uses as many physical registers as possible to transfer
IPC messages. When more arguments are transferred than physical message registers
are available, the kernel begins using the IPC buffer’s msg field to transfer arguments.
However, it leaves room in this array for the physical message registers. For example,
if an IPC transfer or kernel object invocation required 4 message registers (and there
are only 2 physical message registers available on this architecture) then arguments
1 and 2 would be transferred via message registers and arguments 3 and 4 would be
in msg[2] and msg[3]. This allows the user-level object-invocation stubs to copy the
arguments passed in physical registers to the space left in the msg array if desired. The
situation is similar for the tag field. There is space for this field in the seL4 IPCBuffer

structure, which the kernel ignores. User level stubs may wish to copy the message
tag from its CPU register to this field, although the user level stubs provided with the
kernel do not do this.

22 CHAPTER 4. MESSAGE PASSING (IPC)

4.2 Endpoints

Endpoints allow a small amount of data and capabilities (namely the IPC buffer) to be
transferred between two threads. Endpoint objects are invoked directly using the seL4
system calls described in Section 2.2.

IPC Endpoints uses a rendezvous model and as such is synchronous and blocking. An
Endpoint object may queue threads either to send or to receive. If no receiver is ready,
threads performing the seL4 Send() or seL4 Call() system calls will wait in a queue
for the first available receiver. Likewise, if no sender is ready, threads performing the
seL4 Recv() system call or the second half of seL4 ReplyRecv() will wait for the first
available sender.

4.2.1 Endpoint Badges

Endpoint capabilities may be minted to create a new endpoint capability with a badge
attached to it, a data word chosen by the invoker of the mint operation. When a
message is sent to an endpoint using a badged capability, the badge is transferred to
the receiving thread’s badge register.

An endpoint capability with a zero badge is said to be unbadged. Such a capability
can be badged with the seL4 CNode Mutate() or seL4 CNode Mint() invocations on
the CNode containing the capability. Endpoint capabilities with badges cannot be
unbadged, rebadged or used to create child capabilities with different badges.

Only the low 28 bits of the badge are available for use. The kernel will silently ignore
any usage of the high 4 bits.

4.2.2 Capability Transfer

Messages may contain capabilities, which will be transferred to the receiver, provided
that the endpoint capability invoked by the sending thread has Grant rights. An
attempt to send capabilities using an endpoint capability without the Grant right will
result in transfer of the raw message, without any capability transfer.

Capabilities to be sent in a message are specified in the sending thread’s IPC buffer
in the caps field. Each entry in that array is interpreted as a CPTR in the send-
ing thread’s capability space. The number of capabilities to send is specified in the
extraCaps field of the message tag.

The receiver specifies the slot in which it is willing to receive a capability, with three
fields within the IPC buffer: receiveCNode, receiveIndex and receiveDepth. These
fields specify the root CNode, capability address and number of bits to resolve, re-
spectively, to find the slot in which to put the capability. Capability addressing is
described in Section 3.3.2.

A received capability has the same rights as the original, except if the receiving end-
point capability lacks the Write right. In this case, the rights on the sent capability
are diminished, by stripping the Write right from the received copy of the capability.

Note that receiving threads may specify only one receive slot, whereas a sending thread

4.2. ENDPOINTS 23

may include multiple capabilities in the message. Messages containing more than one
capability may be interpreted by kernel objects. They may also be sent to receiv-
ing threads in the case where some of the extra capabilities in the message can be
unwrapped.

If the n-th capability in the message refers to the endpoint through which the message
is sent, the capability is unwrapped : its badge is placed into the n-th position of
the receiver’s badges array, and the kernel sets the n-th bit (counting from the least
significant) in the capsUnwrapped field of the message tag. The capability itself is not
transferred, so the receive slot may be used for another capability.

If a receiver gets a message whose tag has an extraCaps of 2 and a capsUnwrapped of
2, then the first capability in the message was transferred to the specified receive slot
and the second capability was unwrapped, placing its badge in badges[1]. There may
have been a third capability in the sender’s message which could not be unwrapped.

4.2.3 Errors

Errors in capability transfers can occur at two places: in the send phase or in the
receive phase. In the send phase, all capabilities that the caller is attempting to send
are looked up to ensure that they exist before the send is initiated in the kernel. If the
lookup fails for any reason, seL4 Send() and seL4 Call() system calls immediately
abort and no IPC or capability transfer takes place. The system call will return a
lookup failure error as described in Section 10.1.

In the receive phase, seL4 transfers capabilities in the order that they are found in
the sending thread’s IPC buffer caps array and terminates as soon as an error is
encountered. Possible error conditions are:

• A source capability cannot be looked up. Although the presence of the source
capabilities is checked when the sending thread performs the send system call,
this error may still occur. The sending thread may have been blocked on the
endpoint for some time before it was paired with a receiving thread. During this
time, its CSpace may have changed and the source capability pointers may no
longer be valid.

• The destination slot cannot be looked up. Unlike the send system call, the seL4 -

Recv() system call does not check that the destination slot exists and is empty
before it initiates the receive. Hence, the seL4 Recv() system call will not fail
with an error if the destination slot is invalid and will instead transfer badged
capabilities until an attempt to save a capability to the destination slot is made.

• The capability being transferred cannot be derived. See Section 3.1.5 for details.

An error will not void the entire transfer, it will just end it prematurely. The capa-
bilities processed before the failure are still transferred and the extraCaps field in the
receiver’s IPC buffer is set to the number of capabilities transferred up to failure. No
error message will be returned to the receiving thread in any of the above cases.

Chapter 5

Notifications

Notifications are a simple, non-blocking signalling mechanism that logically represents
a set of binary semaphores.

5.1 Notification Objects

A Notification object contains a single data word, called the notification word. Such an
object supports two operations: seL4 Signal() and seL4 Wait().

Notification capabilities can be badged, using seL4 CNode Mutate() or seL4 CNode -

Mint(), just like Endpoint capabilities (see Section 4.2.1). As with Endpoint capabilities,
badged Notification capabilities cannot be unbadged, rebadged or used to create child
capabilities with different badges.

5.2 Signalling, Polling and Waiting

The seL4 Signal() method updates the notification word by bit-wise or-ing it with
the badge of the invoked notification capability. It also unblocks the first thread waiting
on the notification (if any). As such, seL4 Signal() works like concurrently signalling
multiple semaphores (those indicated by the bits set in the badge). If the signal sender
capability was unbadged or 0-badged, the operation degrades to just waking up the
first thread waiting on the notification (also see below).

The seL4 Wait() method works similarly to a select-style wait on the set of semaphores:
If the notification word is zero at the time seL4 Wait() is called, the invoker blocks.
Else, the call returns immediately, setting the notification word to zero and returning
to the invoker the previous notification-word value.

The seL4 Poll() is the same as seL4 Wait(), except if no signals are pending (the
notification word is 0) the call will return immediately without blocking.

If threads are waiting on the Notification object at the time seL4 Signal() is invoked,
the first queued thread receives the notification. All other threads keep waiting until
the next time the notification is signalled.

24

5.3. BINDING NOTIFICATIONS 25

If seL4 Signal() is invoked with an unbadged or 0-badged capability, the first queued
thread is unblocked with a zero return value. If no thread is waiting, the seL4 Signal()

operation with an unbadged capability has no effect.

5.3 Binding Notifications

Notification objects and TCBs can be bound together in a 1-to-1 relationship through
the seL4 TCB BindNotification() invocation. When a Notification is bound to a TCB,
signals to that notification object will be delivered even if the thread is receiving from
an IPC endpoint. To distinguish whether the received message was a notification or
an IPC, developers should check the badge value. By reserving a specific badge (or
range of badges) for capabilities to the bound notification — distinct from endpoint
badges — the message source can be determined.

Once a notification has been bound, the only thread that may perform seL4 Wait()

on the notification is the bound thread.

Chapter 6

Threads and Execution

6.1 Threads

seL4 provides threads to represent an execution context and manage processor time.
A thread is represented in seL4 by its thread control block object (TCB). Each TCB

has an associated CSpace (see Chapter 3) and VSpace (see Chapter 7) which may be
shared with other threads. A TCB may also have an IPC buffer (see Chapter 4), which
is used to pass extra arguments during IPC or kernel object invocation that do not
fit in the architecture-defined message registers. While it is not compulsory that a
thread has an IPC buffer, it will not be able to perform most kernel invocations, as
they require cap transfer. Each thread belongs to exactly one security domain (see
Section 6.3).

6.1.1 Thread Creation

Like other objects, TCBs are created with the seL4 Untyped Retype() method (see
Section 2.4). A newly created thread is initially inactive. It is configured by setting its
CSpace and VSpace with the seL4 TCB SetSpace() or seL4 TCB Configure() meth-
ods and then calling seL4 TCB WriteRegisters() with an initial stack pointer and
instruction pointer. The thread can then be activated either by setting the resume -

target parameter in the seL4 TCB WriteRegisters() invocation to true or by seper-
ately calling the seL4 TCB Resume() method. In multicore machines, the thread would
be running on the same CPU which originally created the TCB. However, it could be
migrated to other CPUs by calling seL4 TCB SetAffinity().

6.1.2 Thread Deactivation

The seL4 TCB Suspend() method deactivates a thread. Suspended threads can later
be resumed. Their suspended state can be retrieved with the seL4 TCB ReadRegis-

ters() and seL4 TCB CopyRegisters() methods. They can also be reconfigured and
reused or left suspended indefinitely if not needed. Threads will be automatically
suspended when the last capability to their TCB is deleted.

26

6.1. THREADS 27

6.1.3 Scheduling

seL4 uses a preemptive round-robin scheduler with 256 priority levels. All threads have
a maximum controlled priority (MCP) and a priority, the latter being the effective
priority of the thread. When a thread creates or modifies a thread (including itself),
it can only set the other thread’s priority and MCP to be less than or equal to its
own MCP. Thread priority and MCP can be set with seL4 TCB Configure() and
seL4 TCB SetPriority(), seL4 TCB SetMCPriority() methods.

6.1.4 Exceptions

Each thread has an associated exception-handler endpoint. If the thread causes an
exception, the kernel creates an IPC message with the relevant details and sends this
to the endpoint. This thread can then take the appropriate action. Fault IPC messages
are described in Section 6.2.

In order to enable exception handlers, a capability to the exception-handler endpoint
must exist in the CSpace of the thread that generates the exception. The exception-
handler endpoint can be set with the seL4 TCB SetSpace() or seL4 TCB Configure()

method. With these methods, a capability address for the exception handler can be
associated with a thread. This address is then used to lookup the handler endpoint
when an exception is generated. Note, however, that these methods make no attempt
to check whether an endpoint capability exists at the specified address in the CSpace of
the thread. The capability is only looked up when an exception actually happens and
if the lookup fails then no exception message is delivered and the thread is suspended
indefinitely.

The exception endpoint must have send and grant rights. Replying to the exception
message restarts the thread. For certain exception types, the contents of the reply
message may be used to set the values in the registers of the thread being restarted.
See Section 6.2 for details.

6.1.5 Message Layout of the Read-/Write-Registers Methods

The registers of a thread can be read and written with the seL4 TCB ReadRegisters()

and seL4 TCB WriteRegisters() methods. For some registers, the kernel will silently
mask certain bits or ranges of bits off, and force them to contain certain values to ensure
that they cannot be maliciously set to values that would compromise the running
system, or to respect values that the architecture specifications have mandated to be
certain values. On X86, these bits currently are:

• EFLAGS: Bits 1, 3 and 5, TF, Bits 12-31, and IF.

The register contents are transferred via the IPC buffer. The IPC buffer locations that
registers are copied to/from are given below.

28 CHAPTER 6. THREADS AND EXECUTION

IA-32

Register IPC Buffer location

EIP IPCBuffer[0]

ESP IPCBuffer[1]

EFLAGS IPCBuffer[2]

EAX IPCBuffer[3]

EBX IPCBuffer[4]

ECX IPCBuffer[5]

EDX IPCBuffer[6]

ESI IPCBuffer[7]

EDI IPCBuffer[8]

EBP IPCBuffer[9]

TLS BASE IPCBuffer[10]

FS IPCBuffer[11]

GS IPCBuffer[12]

ARM

Register IPC Buffer location

PC IPCBuffer[0]

SP IPCBuffer[1]

CPSR IPCBuffer[2]

R0-R1 IPCBuffer[3-4]

R8-R12 IPCBuffer[5-9]

R2-R7 IPCBuffer[10-15]

R14 IPCBuffer[16]

6.2 Faults

A thread’s actions may result in a fault. Faults are delivered to the thread’s ex-
ception handler so that it can take the appropriate action. The fault type is spec-
ified in the message label and is one of: seL4 Fault CapFault, seL4 Fault VMFault,
seL4 Fault UnknownSyscall, seL4 Fault UserException, seL4 Fault DebugException,
or seL4 Fault NullFault (indicating no fault occured and this is a normal IPC mes-
sage).

Fault are delivered in such a way as to imitate a Call from the faulting thread. This
means that to send a fault message the fault endpoint must have both write and grant
permissions.

6.2.1 Capability Faults

Capability faults may occur in two places. Firstly, a capability fault can occur when
lookup of a capability referenced by a seL4 Call() or seL4 Send() system call failed

6.2. FAULTS 29

(seL4 NBSend() calls on invalid capabilities silently fail). In this case, the capability
on which the fault occurred may be the capability being invoked or an extra capability
passed in the caps field in the IPC buffer.

Secondly, a capability fault can occur when seL4 Recv() or seL4 NBRecv() is called
on a capability that does not exist, is not an endpoint or notification capability or does
not have receive permissions.

Replying to the fault IPC will restart the faulting thread. The contents of the IPC
message are given in Table 6.1.

Meaning IPC buffer location

Address at which to restart execution seL4 CapFault IP

Capability address seL4 CapFault Addr

In receive phase (1 if the fault happened
during a receive system call, 0 otherwise)

seL4 CapFault InRecvPhase

Lookup failure description. As described
in Section 3.4

seL4 CapFault LookupFailureType

Table 6.1: Contents of an IPC message.

6.2.2 Unknown Syscall

This fault occurs when a thread executes a system call with a syscall number that
is unknown to seL4. The register set of the faulting thread is passed to the thread’s
exception handler so that it may, for example, emulate the system call if a thread is
being virtualised.

Replying to the fault IPC allows the thread to be restarted and/or the thread’s register
set to be modified. If the reply has a label of zero, the thread will be restarted.
Additionally, if the message length is non-zero, the faulting thread’s register set will
be updated as shown in Table 6.2 and Table 6.3. In this case, the number of registers
updated is controlled with the length field of the message tag.

ARM

Value sent Register set by re-
ply

IPC buffer location

R0-R7 (same) seL4 UnknownSyscall R[0-7]

FaultInstruction (same) seL4 UnknownSyscall FaultIP

SP (same) seL4 UnknownSyscall SP

LR (same) seL4 UnknownSyscall LR

CPSR (same) seL4 UknownSyscall CPSR

Syscall number — seL4 UnknownSyscall Syscall

Table 6.2: Unknown system call outcome on the ARM architecture.

30 CHAPTER 6. THREADS AND EXECUTION

IA-32

Value sent Reply register IPC buffer location

EAX (same) seL4 UnknownSyscall EAX

EBX (same) seL4 UnknownSyscall EBX

ECX (same) seL4 UnknownSyscall ECX

EDX (same) seL4 UnknownSyscall EDX

ESI (same) seL4 UnknownSyscall ESI

EDI (same) seL4 UnknownSyscall EDI

EBP (same) seL4 UnknownSyscall EBP

EIP (same) seL4 UnknownSyscall FaultIP

ESP (same) seL4 UnknownSyscall SP

EFLAGS (same) seL4 UnknownSyscall EFLAGS

Syscall number — seL4 UnknownSyscall Syscall

Table 6.3: Unknown system call outcome on the IA-32 architecture.

6.2.3 User Exception

User exceptions are used to deliver architecture-defined exceptions. For example, such
an exception could occur if a user thread attempted to divide a number by zero.

Replying to the fault IPC allows the thread to be restarted and/or the thread’s register
set to be modified. If the reply has a label of zero, the thread will be restarted.
Additionally, if the message length is non-zero, the faulting thread’s register set will
be updated as shown in Table 6.4 and Table 6.5. In this case, the number of registers
updated is controlled with the length field of the message tag.

ARM

Value sent Register set by re-
ply

IPC buffer location

FaultInstruction (same) seL4 UserException FaultIP

SP (same) seL4 UserException SP

CPSR (same) seL4 UserException CPSR

Exception number — seL4 UserException Number

Exception code — seL4 UserException Code

Table 6.4: User exception outcome on the ARM architecture.

6.2. FAULTS 31

Value sent Register set by re-
ply

IPC buffer location

EIP (same) seL4 UserException FaultIP

ESP (same) seL4 UserException SP

EFLAGS (same) seL4 UserException EFLAGS

Exception number — seL4 UserException Number

Exception code — seL4 UserException Code

Table 6.5: User exception outcome on the IA-32 architecture.

IA-32

6.2.4 Debug Exception: Breakpoints and Watchpoints

Debug exceptions are used to deliver trace and debug related events to threads. Break-
points, watchpoints, trace-events and instruction-performance sampling events are ex-
amples. These events are supported for userspace threads when the kernel is configured
to include them (when CONFIG HARDWARE DEBUG API is set). Information on
the available hardware debugging resources is presented in the form of the following
constants:

seL4 NumHWBreakpoints : Defines the total number of hardware break registers
available, of all types available on the hardware platform. On the ARM Cortex
A7 for example, there are 6 exclusive instruction breakpoint registers, and 4
exclusive data watchpoint registers, for a total of 10 monitor registers. On this
platform therefore, seL4 NumHWBreakpoints is defined as 10. The instruction
breakpoint registers will always be assigned the lower API-IDs, and the data
watchpoints will always be assigned following them.

Additionally, seL4 NumExclusiveBreakpoints, seL4 NumExclusiveWatchpoints

and seL4 NumDualFunctionMonitors are defined for each target platform to re-
flect the number of available hardware breakpoints/watchpoints of a certain type.

seL4 NumExclusiveBreakpoints : Defines the number of hardware registers capa-
ble of generating a fault only on instruction execution. Currently this will be set
only on ARM platforms. The API-ID of the first exclusive breakpoint is given
in seL4 FirstBreakpoint. If there are no instruction-break exclusive registers,
seL4 NumExclusiveBreakpoints will be set to 0 and seL4 FirstBreakpoint

will be set to -1.

seL4 NumExclusiveWatchpoints : Defines the number of hardware registers ca-
pable of generating a fault only on data access. Currently this will be set only
on ARM platforms. The API-ID of the first exclusive watchpoint is given in
seL4 FirstWatchpoint. If there are no data-break exclusive registers, seL4 -

NumExclusiveWatchpoints will be set to 0 and seL4 FirstWatchpoint will be
set to -1.

seL4 NumDualFunctionMonitors : Defines the number of hardware registers ca-
pable of generating a fault on either type of access – i.e, the register supports both

32 CHAPTER 6. THREADS AND EXECUTION

instruction and data breaks. Currently this will be set only on x86 platforms.
The API-ID of the first dual-function monitor is given in seL4 FirstDualFunc-

tionMonitor. If there are no dual-function break registers, seL4 NumDualFunc-

tionMonitors will be set to 0 and seL4 FirstDualFunctionMonitor will be set
to -1.

Value sent IPC buffer location

Breakpoint instruction address IPCBuffer[0]

Exception reason IPCBuffer[1]

Watchpoint data access address IPCBuffer[2]

Register API-ID IPCBuffer[3]

Table 6.6: Debug fault message layout. The register API-ID is not
returned in the fault message from the kernel on single-step faults.

6.2.5 Debug Exception: Single-stepping

The kernel provides support for the use of hardware single-stepping of userspace
threads when configured to do so (when CONFIG HARDWARE DEBUG API is set).
To this end it exposes the invocation, seL4 TCB ConfigureSingleStepping.

The caller is expected to select an API-ID that corresponds to an instruction break-
point, to use when setting up the single-stepping functionality (i.e, API-ID from 0 to
seL4 NumExclusiveBreakpoints - 1). However, not all hardware platforms require
an actual hardware breakpoint register to provide single-stepping functionality. If the
caller’s hardware platform requires the use of a hardware breakpoint register, it will
use the breakpoint register given to it in bp num, and return true in bp was consumed.
If the underlying platform does not need a hardware breakpoint to provide single-
stepping, seL4 will return false in bp was consumed and leave bp num unchanged.

If bp was consumed is true, the caller should not attempt to re-configure bp num

for Breakpoint or Watchpoint usage until the caller has disabled single-stepping and
released that register, via a subsequent call to seL4 TCB ConfigureSingleStepping,
or a fault-reply with n instr being 0. Setting num instructions to 0 disables single
stepping.

On architectures that require an actual hardware registers to be configured for single-
stepping functionality, seL4 will restrict the number of registers that can be configured
as single-steppers, to one at any given time. The register that is currently configured
(if any) for single-stepping will be the implicit bp num argument in a single-step debug
fault reply.

The kernel’s single-stepping, also supports skipping a certain number of instructions
before delivering the single-step fault message. Num instructions should be set to
1 when single-stepping, or any non-zero integer value to skip that many instructions
before resuming single-stepping. This skip-count can also be set in the fault-reply to
a single-step debug fault.

6.3. DOMAINS 33

Value sent Register set by reply IPC buffer location

Breakpoint instruc-

tion address

num instructions to skip IPCBuffer[0]

Exception reason — IPCBuffer[1]

Table 6.7: Single-step fault message layout.

6.2.6 VM Fault

The thread caused a page fault. Replying to the fault IPC will restart the thread. The
contents of the IPC message are given below.

ARM

Meaning IPC buffer location

Program counter to restart execution at. seL4 VMFault IP

Address that caused the fault. seL4 VMFault SP

Instruction fault (1 if the fault was
caused by an instruction fetch).

seL4 VMFault PrefetchFault

Fault status register (FSR). Contains in-
formation about the cause of the fault.
Architecture dependent.

seL4 VMFault FSR

Table 6.8: VM Fault outcome on the ARM architecture.

IA-32

Meaning IPC buffer location

Program counter to restart execution at. seL4 VMFault IP

Address that caused the fault. seL4 VMFault SP

Instruction fault (1 if the fault was
caused by an instruction fetch).

seL4 VMFault PrefetchFault

Fault status register (FSR). Contains in-
formation about the cause of the fault.
Architecture dependent.

seL4 VMFault FSR

Table 6.9: VM fault outcome on the IA-32 architecture.

6.3 Domains

Domains are used to isolate independent subsystems, so as to limit information flow be-
tween them. The kernel switches between domains according to a fixed, time-triggered

34 CHAPTER 6. THREADS AND EXECUTION

schedule. The fixed schedule is compiled into the kernel via the constant CONFIG -

NUM DOMAINS and the global variable ksDomSchedule.

A thread belongs to exactly one domain, and will only run when that domain is active.
The seL4 DomainSet Set() method changes the domain of a thread. The caller must
possess a Domain cap and the thread’s TCB cap. The initial thread starts with a Domain

cap (see Section 4.1).

Chapter 7

Address Spaces and Virtual
Memory

A virtual address space in seL4 is called a VSpace. In a similar way to a CSpace
(see Chapter 3), a VSpace is composed of objects provided by the microkernel. Unlike
CSpaces, these objects for managing virtual memory largely correspond to those of the
hardware; that is, a page directory pointing to page tables, which in turn map physical
frames. The kernel also includes ASID Pool and ASID Control objects for tracking the
status of address spaces.

These VSpace-related objects are sufficient to implement the hardware data struc-
tures required to create, manipulate, and destroy virtual memory address spaces. It
should be noted that, as usual, the manipulator of a virtual memory space needs the
appropriate capabilities to the required objects.

7.1 Overview

IA-32 IA-32 processors have a two-level page-table structure. The top-level page
directory covers a 4 GiB range and each page table covers a 4 MiB range. Frames can
be 4 KiB or 4 MiB. Before a 4 KiB frame can be mapped, a page table covering the
range that the frame will be mapped into must have been mapped, otherwise seL4
will return an error. 4 MiB frames are mapped directly into the page directory, thus,
a page table does not need to be mapped first.

ARM ARM processors also have a two-level page-table structure. The top-level
page directory covers a range of 4 GiB and each page table covers a 1 MiB range. Four
page sizes are allowed: 4 KiB, 64 KiB, 1 MiB and 16 MiB. 4 KiB and 64 KiB pages are
mapped into the second-level page table. Before they can be mapped, a page table
covering the range that they will be mapped into must have been installed. 1 MiB and
16 MiB pages are installed directly into the page directory such that it is not necessary
to map a page table first. Pages of 4 KiB and 1 MiB size occupy one slot in a page
table and the page directory, respectively. Pages of 64 KiB and 16 MiB size occupy 16
slots in a page table and the page directory, respectively.

35

36 CHAPTER 7. ADDRESS SPACES AND VIRTUAL MEMORY

7.2 Objects

Page Directory The Page Directory (PD) is the top-level page table of the two-level
page table structure. It has a hardware-defined format, but conceptually contains a
number of page directory entries (PDEs). The Page Directory has no methods itself, but
it is used as an argument to several other virtual-memory related object invocations.

Page Table The Page Table (PT) object forms the second level of the page-table struc-
ture. It contains a number of slots, each of which contains a page-table entry (PTE).

Page Table objects possess only two methods:

seL4 ARM PageTable Map()

seL4 IA32 PageTable Map()

Takes a Page Directory capability as an argument, and installs a reference to the
invoked Page Table in a specified slot in the Page Directory.

seL4 ARM PageTable Unmap()

seL4 IA32 PageTable Unmap()

Removes the reference to the invoked Page Table from its containing Page Directory.

Page A Page object is a region of physical memory that is used to implement virtual
memory pages in a virtual address space. The Page object has the following methods:

seL4 ARM Page Map()

seL4 IA32 Page Map()

Takes a Page Directory capability as an argument and installs a reference to the
given Page in the PD or PT slot corresponding to the given address.

seL4 ARM Page Remap()

seL4 IA32 Page Remap()

Changes the permissions of an existing mapping.

seL4 ARM Page Unmap()

seL4 IA32 Page Unmap()

Removes an existing mapping.

The virtual address for a Page mapping must be aligned to the size of the Page and
must be mapped to a suitable Page Directory or Page Table. To map a page readable,
the capability to the page that is being invoked must have read permissions. To
map the page writable, the capability must have write permissions. The requested
mapping permissions are specified with an argument of type seL4 CapRights given
to the seL4 ARM Page Map() or seL4 IA32 Page Map() method. seL4 CanRead and
seL4 CanWrite are the only valid permissions on both ARM and IA-32 architectures.
If the capability does not have sufficient permissions to authorise the given mapping,

7.3. MAPPING ATTRIBUTES 37

then the mapping permissions are silently downgraded.

ASID Control For internal kernel book-keeping purposes, there is a fixed maximum
number of applications the system can support. In order to manage this limited re-
source, the microkernel provides an ASID Control capability. The ASID Control capability
is used to generate a capability that authorises the use of a subset of available address-
space identifiers. This newly created capability is called an ASID Pool. ASID Control

only has a single method:

seL4 ARM ASIDControl MakePool()

seL4 IA32 ASIDControl MakePool()

Together with a capability to Untyped Memory as argument creates an ASID Pool.

The untyped capability given to the seL4 ARM ASIDControl MakePool() call must
represent a 4K memory object. This will create an ASID pool with enough space for
1024 VSpaces.

ASID Pool An ASID Pool confers the right to create a subset of the available maximum
applications. For a VSpace to be usable by an application, it must be assigned to an
ASID. This is done using a capability to an ASID Pool. The ASID Pool object has a
single method:

seL4 ARM ASIDPool Assign()

seL4 IA32 ASIDPool Assign()

Assigns an ASID to the VSpace associated with the Page Directory passed in as an
argument.

7.3 Mapping Attributes

A parameter of type seL4 ARM VMAttributes or seL4 IA32 VMAttributes is used to
specify the cache behaviour of the page being mapped; possible values for ARM that
can be bitwise OR’d together are shown in Table 7.1 and an enumeration of valid
values for IA-32 are shown in Table 7.2.

Attribute Meaning

seL4 ARM PageCacheable Enable data in this mapping to be cached
seL4 ARM ParityEnabled Enable parity checking for this mapping
seL4 ARM ExecuteNever Map this memory as non-executable

Table 7.1: Virtual memory attributes for ARM page table entries.

38 CHAPTER 7. ADDRESS SPACES AND VIRTUAL MEMORY

Attribute Meaning

seL4 IA32 WriteBack Read and writes are cached
seL4 IA32 CacheDisabled Prevent data in this mapping from being cached
seL4 IA32 WriteThrough Enable write through cacheing for this mapping
seL4 IA32 WriteCombining Enable write combining for this mapping

Table 7.2: Virtual memory attributes for IA32 page table entries.

7.4 Sharing Memory

seL4 does not allow Page Tables to be shared, but does allow pages to be shared between
address spaces. To share a page, the capability to the Page must first be duplicated
using the seL4 CNode Copy() method and the new copy must be used in the seL4 -

ARM Page Map() or seL4 IA32 Page Map() method that maps the page into the second
address space. Attempting to map the same capability twice will result in an error.

7.5 Page Faults

Page faults are reported to the exception handler of the executed thread. See Sec-
tion 6.2.6.

Chapter 8

Hardware I/O

8.1 Interrupt Delivery

Interrupts are delivered as notifications. A thread may configure the kernel to signal a
particular Notification object each time a certain interrupt triggers. Threads may then
wait for interrupts to occur by calling seL4 Wait() or seL4 Poll() on that Notification.
In the notification word returned from either call, bit n (modulo word size) represents
IRQ n, the bit will be set if the corresponding IRQ was raised. This supports the use
of a single handler for multiple IRQs.

IRQHandler capabilities represent the ability of a thread to configure a certain interrupt.
They have three methods:

seL4 IRQHandler SetNotification() specifies the Notification the kernel should sig-

nal() when an interrupt occurs. A driver may then call seL4 Wait() or seL4 -

Poll() on this notification to wait for interrupts to arrive.

seL4 IRQHandler Ack() informs the kernel that the userspace driver has finished pro-
cessing the interrupt and the microkernel can send further pending or new inter-
rupts to the application.

seL4 IRQHandler Clear() de-registers the Notification from the IRQHandler object.

When the system first starts, no IRQHandler capabilities are present. Instead, the initial
thread’s CSpace contains a single IRQControl capability. This capability may be used
to produce a single IRQHandler capability for each interrupt available in the system.
Typically, the initial thread of a system will determine which IRQs are required by
other components in the system, produce an IRQHandler capability for each interrupt,
and then delegate the resulting capabilities as appropriate. Methods on IRQControl can
be used for creating IRQHandler capabilities for interrupt sources.

39

40 CHAPTER 8. HARDWARE I/O

8.2 IA-32-Specific I/O

8.2.1 Interrupts

In addition to managing IRQHandler capabilities, IA-32 platforms require the delivery
location in the CPU vectors to be configured. Regardless of where an interrupt comes
from (IOAPIC, MSI, etc) it must be assigned a unique vector for delivery, ranging from
VECTOR MIN to VECTOR MAX. The rights to allocate a vector are effectively given
through the IRQControl capability and can be considered as the kernel outsourcing the
allocation of this namespace to user level.

seL4 IRQControl GetIOAPIC() creates an IRQHandler capability for an IOAPIC inter-
rupt

seL4 IRQControl GetMSI() creates an IRQHandler capability for an MSI interrupt

8.2.2 I/O Ports

On IA-32 platforms, seL4 provides access to I/O ports to user-level threads. Access to
I/O ports is controlled by IO Port capabilities. Each IO Port capability identifies a range
of ports that can be accessed with it. Reading from I/O ports is accomplished with the
seL4 IA32 IOPort In8(), seL4 IA32 IOPort In16(), and seL4 IA32 IOPort In32()

methods, which allow for reading of 8-, 16- and 32-bit quantities. Similarly, writing to
I/O ports is accomplished with the seL4 IA32 IOPort Out8(), seL4 IA32 IOPort -

Out16(), and seL4 IA32 IOPort Out32() methods. Each of these methods takes as
arguments an IO Port capability and an unsigned integer port, which indicates the I/O
port to read from or write to, respectively. In each case, port must be within the
range of I/O ports identified by the given IO Port capability in order for the method to
succeed.

At system initialisation, the initial thread’s CSpace contains the master IO Port capa-
bility, which allows access to all I/O ports. Other IO Port capabilities, which authorise
access to a specific range of I/O Ports, may be derived from this master capability
using the seL4 CNode Mint() method. The range of I/O ports that the newly cre-
ated capability should identify are specified via the 32-bit badge argument provided
to seL4 CNode Mint(). The first port number in the range occupies the top 16 bits
of badge, while the last port number in the range occupies the bottom 16 bits. The
range is interpreted as being inclusive of these two numbers.

The I/O port methods return error codes upon failure. A seL4 IllegalOperation

code is returned if port access is attempted outside the range allowed by the IO Port

capability. Since invocations that read from I/O ports are required to return two values
– the value read and the error code – a structure containing two members, result and
error, is returned from these API calls.

8.2.3 I/O Space

I/O devices capable of DMA present a security risk because the CPU’s MMU is by-
passed when the device accesses memory. In seL4, device drivers run in user space to

8.2. IA-32-SPECIFIC I/O 41

keep them out of the trusted computing base. A malicious or buggy device driver may,
however, program the device to access or corrupt memory that is not part of its address
space, thus subverting security. To mitigate this threat, seL4 provides support for the
IOMMU on Intel IA-32-based platforms. An IOMMU allows memory to be remapped
from the device’s point of view. It acts as an MMU for the device, restricting the
regions of system memory that it can access. More information can be obtained from
Intel’s IOMMU documentation [Int11].

Two new objects are provided by the kernel to abstract the IOMMU:

IOSpace This object represents the address space associated with a hardware device
on the PCI bus. It represents the right to modify a device’s memory mappings.

IOPageTable This object represents a node in the multilevel page-table structure used
by IOMMU hardware to translate hardware memory accesses.

Page capabilities are used to represent the actual frames that are mapped into the I/O
address space. A Page can be mapped into either a VSpace or an IOSpace but never into
both at the same time.

IOSpace and VSpace fault handling differ significantly. VSpace page faults are redirected
to the thread’s exception handler (see Section 6.2), which can take the appropriate
action and restart the thread at the faulting instruction. There is no concept of an
exception handler for an IOSpace. Instead, faulting transactions are simply aborted;
the device driver must correct the cause of the fault and retry the DMA transaction.

An initial master IOSpace capability is provided in the initial thread’s CSpace. An
IOSpace capability for a specific device is created by using the seL4 CNode Mint()

method, passing the PCI identifier of the device as the low 16 bits of the badge ar-
gument, and a Domain ID as the high 16 bits of the badge argument. PCI identifiers
are explained fully in the PCI specification [SA99], but are briefly described here. A
PCI identifier is a 16-bit quantity. The first 8 bits identify the bus that the device is
on. The next 5 bits are the device identifier: the number of the device on the bus.
The last 3 bits are the function number. A single device may consist of several inde-
pendent functions, each of which may be addressed by the PCI identifier. Domain IDs
are explained fully in the Intel IOMMU documentation [Int11]. There is presently no
way to query seL4 for how many Domain IDs are supported by the IOMMU and the
seL4 CNode Mint() method will fail if an unsupported value is chosen.

The IOMMU page-table structure has three levels. Page tables are mapped into an
IOSpace using the seL4 IA32 IOPageTable Map() method. This method takes the
IOPageTable to map, the IOSpace to map into and the address to map at. Three levels
of page tables must be mapped before a frame can be mapped successfully. A frame is
mapped with the seL4 IA32 Page MapIO() method whose parameters are analogous
to the corresponding method that maps Pages into VSpaces (see Chapter 7), namely
seL4 IA32 Page Map().

Unmapping is accomplished with the usual unmap (see Chapter 7) API call, seL4 -

IA32 Page Unmap().

More information about seL4’s IOMMU abstractions can be found in [Pal09].

Chapter 9

System Bootstrapping

9.1 Initial Thread’s Environment

The seL4 kernel creates a minimal boot environment for the initial thread. This
environment consists of the initial thread’s TCB, CSpace and VSpace, consisting of
frames that contain the userland image (code/data of the initial thread) and the IPC
buffer. The initial thread’s CSpace consists of exactly one CNode which contains
capabilities to the initial thread’s own resources was well as to all available global
resources. The CNode size can be configured at compile time (default is 212 slots), but
the guard is always chosen so that the CNode resolves exactly 32 bits. This means,
the first slot of the CNode has CPTR 0x0, the second slot has CPTR 0x1 etc.

The first 12 slots contain specific capabilities as listed in Table 9.1.

Table 9.1: Initial thread’s CNode content.

Enum Constant Capability

seL4 CapNull null
seL4 CapInitThreadTCB initial thread’s TCB
seL4 CapInitThreadCNode initial thread’s CNode
seL4 CapInitThreadVSpace initial thread’s VSpace
seL4 CapIRQControl global IRQ controller (see Section 8.1)
seL4 CapASIDControl global ASID controller (see Chapter 7)
seL4 CapInitThreadASIDPool initial thread’s ASID pool (see Chapter 7)
seL4 CapIOPort global I/O port cap, null cap if unsupported (see

Section 8.2.2)
seL4 CapIOSpace global I/O space cap, null cap if unsupported (see

Section 8.2.3)
seL4 CapBootInfoFrame BootInfo frame (see Section 9.2)
seL4 CapInitThreadIPCBuffer initial thread’s IPC buffer (see Section 4.1)
seL4 CapDomain domain cap (see Section 6.3)

42

9.2. BOOTINFO FRAME 43

9.2 BootInfo Frame

CNode slots with CPTR seL4 NumInitialCaps (defined in the seL4 userland library)
and above are filled dynamically during bootstrapping. Their exact contents depend
on the userland image size, platform configuration (devices) etc. In order to tell the
initial thread which capabilities are stored where in its CNode, the kernel provides a
BootInfo Frame which is mapped into the initial thread’s address space. The mapped
address is chosen by the kernel and given to the initial thread via a CPU register. On
ARM this register is r0, on IA32 it is ebx and on x86-64 rdi

The BootInfo Frame contains the C struct described in Table 9.2. It is defined in the
seL4 userland library. Besides talking about capabilities, it also informs the initial
thread about the current platform’s configuration.

The type seL4 SlotRegion is a C struct which contains start and end slot CPTRs.
It denotes a region of slots in the initial thread’s CNode, starting with CPTR start

and with end being the CPTR of the first slot after the region ends, i.e. end - 1 points
to the last slot of the region.

Table 9.2: BootInfo struct.

Field Type Field Name Description

seL4 Word extraLen length of additional bootinfo
information

seL4 Word nodeID node ID
seL4 Word numNodes number of nodes
seL4 Word numIOPTLevels number of I/O page-table lev-

els (0 if no IOMMU)
seL4 IPCBuffer* ipcBuffer pointer to the initial thread’s

IPC buffer
seL4 SlotRegion empty empty slots (null caps)
seL4 SlotRegion sharedFrames reserved
seL4 SlotRegion userImageFrames frames containing the user-

land image
seL4 SlotRegion userImagePaging userland-image paging struc-

ture caps
seL4 SlotRegion ioSpaceCaps I/O space capabilities for

ARM SMMU
seL4 SlotRegion extraBIPages frames backing additional

bootinfo information
seL4 UntypedDesc[] untypedList array of information about

each untyped
seL4 Uint8 initThreadCNodeSizeBits CNode size (2n slots)
seL4 Uint32 initThreadDomain domain of the initial thread

(see Section 6.3)
seL4 SlotRegion untyped untyped-memory capabilities

Depending on the architecture and platform there might be additional pieces of boot

44 CHAPTER 9. SYSTEM BOOTSTRAPPING

information. If extraLen is greater then zero then 4K after the start of bootinfo is
a region of extraLen additional bootinfo structures. Each chunk starts with a seL4 -

BootInfoHeader, described in Table 9.3, that describes what the chunk is and how
long it is, where the length includes the header. The length can be used to skip over
chunks that you do not understand. The only generally defined chunk type is SEL4 -

BOOTINFO HEADER PADDING and describes an empty chunk that has no data, any other
types are platform or architecture specific. The extraBIPages slot region gives the
frames capabilities for the pages that make up the additional boot info region.

Table 9.3: BootInfoHeader struct.

Field Type Field Name Description

seL4 Word id Identifier indicating the contents of the chunk
seL4 Uint8 len Length in bytes of the chunk

The capabilities in userImageFrames are ordered such that the first capability refer-
ences the first frame of the userland image and so on. The capabilities in userIm-

agePaging are ordered in descending order of paging structure size. Within a given
paging structure size, capabilities are ordered by the virtual address at which the
corresponding objects are mapped into the initial thread’s address space.

It is up to userland to infer the virtual address of frames referenced by the capabilities
in userImageFrames and the virtual address and types of paging structures referenced
by the capabilities in userImagePaging. Userland typically has a way of finding out to
which virtual addresses its code and data is mapped (e.g. in GCC, with the standard
linker script, the symbols executable start and end are available). Additionally,
the initial thread can assume that its address space is virtually contiguous, and is
made up of the smallest frames available on the architecture. It’s also assumed that
the initial thread knows which paging structures are available on the architecture
it’s running on. This, along with knowledge of how capabilities in userImageFrames

and userImagePaging are ordered, is sufficient information for userland to infer the
virtual address of each frame capability, and the virtual address and type of each
paging structure capability.

Untyped memory is given in no particular order. The array entry untypedList[i]

stores the untyped-memory information of the i-th untyped cap of the slot region
untyped. Therefore, the array length is at least untyped.end - untyped.start. The
actual length is hardcoded in the kernel and irrelevant to the reader of the array. The
untyped memory information is stored in a seL4 UntypedDesc struct, described in
Table 9.4, and details the address, size and kind of the memory backing the untyped.
This allows userland to infer physical memory addresses of retyped frames and use
them to initiate DMA transfers when no IOMMU is available. The kernel makes no
guarantees about certain sizes of untyped memory being available.

If the platform has an seL4-supported IOMMU, numIOPTLevels contains the number of
IOMMU-page-table levels. This information is needed by userland when constructing
an IOMMU address space (IOSpace). If there is no IOMMU support, numIOPTLevels
is 0.

9.3. BOOT COMMAND-LINE ARGUMENTS 45

Table 9.4: seL4 UntypedDesc struct

Field Type Field Name Description

seL4 Word paddr physical base address of the untyped object
seL4 Uint8 padding1 manual padding so final struct is a multiple of the word size
seL4 Uint8 padding2 manual padding so final struct is a multiple of the word size
seL4 Uint8 sizeBits size (2n bytes) of the untyped object
seL4 Uint8 isDevice is this untyped a device or not (see Section 2.4)

On ARM if the platform has any available SMMU units the capabilities for them will
be described by the ioSpaceCaps slot region. The mapping of a capability from this
region to a specific SMMU is platform specific.

9.3 Boot Command-line Arguments

On IA-32, seL4 accepts boot command-line arguments which are passed to the kernel
via a multiboot-compliant bootloader (e.g. GRUB, syslinux). Multiple arguments are
separated from each other by whitespace. Two forms of arguments are accepted: (1)
key-value arguments of the form “key=value” and (2) single keys of the form “key”.
The value field of the key-value form may be a string, a decimal integer, a hexadecimal
integer beginning with “0x”, or an integer list where list elements are separated by
commas. Keys and values can’t have any whitespace in them and there can be no
whitespace before or after an “=” or a comma either. Arguments are listed in Table 9.5
along with their default values (if left unspecified).

Table 9.5: IA-32 boot command-line arguments.

Key Value Default

console port I/O-port base of the serial port
that the kernel prints to (if com-
piled in debug mode)

0x3f8

debug port I/O-port base of the serial port
that is used for kernel de-
bugging (if compiled in debug
mode)

0x3f8

disable iommu none The IOMMU is enabled by
default on VT-d-capable plat-
forms

Chapter 10

seL4 API Reference

10.1 Error Codes

Invoking a capability with invalid parameters will result in an error. seL4 system calls
return an error code in the message tag and a short error description in the message
registers to aid the programmer in determining the cause of errors.

10.1.1 Invalid Argument

A non-capability argument is invalid.

Field Meaning

Label seL4 InvalidArgument

IPCBuffer[0] Invalid argument number

10.1.2 Invalid Capability

A capability argument is invalid.

Field Meaning

Label seL4 InvalidCapability

IPCBuffer[0] Invalid capability argument number

10.1.3 Illegal Operation

The requested operation is not permitted.

Field Meaning

Label seL4 IllegalOperation

46

10.1. ERROR CODES 47

10.1.4 Range Error

An argument is out of the allowed range.

Field Meaning

Label seL4 RangeError

IPCBuffer[0] Minimum allowed value
IPCBuffer[1] Maximum allowed value

10.1.5 Alignment Error

A supplied argument does not meet the alignment requirements.

Field Meaning

Label seL4 AlignmentError

10.1.6 Failed Lookup

A capability could not be looked up.

Field Meaning

Label seL4 FailedLookup

IPCBuffer[0] 1 if the lookup failed for a source capability, 0 otherwise
IPCBuffer[1] Type of lookup failure
IPCBuffer[2..] Lookup failure description as described in Section 3.4

10.1.7 Delete First

A destination slot specified in the syscall arguments is occupied.

Field Meaning

Label seL4 DeleteFirst

10.1.8 Revoke First

The object currently has other objects derived from it and the requested invocation
cannot be performed until either these objects are deleted or the revoke invocation is
performed on the capability.

Field Meaning

Label seL4 RevokeFirst

48 CHAPTER 10. SEL4 API REFERENCE

10.1.9 Not Enough Memory

The Untyped Memory object does not have enough unallocated space to complete the
seL4 Untyped Retype() request.

Field Meaning

Label seL4 NotEnoughMemory

IPCBuffer[0] Amount of memory available in bytes

10.2 System Calls

10.2.1 Send

LIBSEL4 INLINE FUNC void seL4 Send

Send to a capability.

Type Name Description

seL4 CPtr dest The capability to be invoked.
seL4 MessageInfo t msgInfo The messageinfo structure for the IPC.

Return value: This method does not return anything.

Description: See Section 2.2

10.2.2 Recv

LIBSEL4 INLINE FUNC seL4 MessageInfo t seL4 Recv

Block until a message is received on an endpoint.

Type Name Description

seL4 CPtr src The capability to be invoked.
seL4 Word * sender The address to write sender information to. The

sender information is the badge of the endpoint capa-
bility that was invoked by the sender, or the notifica-
tion word of the notification object that was signalled.
This parameter is ignored if NULL.

Return value: A seL4 MessageInfo t structure as described in Section 4.1

Description: See Section 2.2

10.2. SYSTEM CALLS 49

10.2.3 Call

LIBSEL4 INLINE FUNC seL4 MessageInfo t seL4 Call

Call a capability.

Type Name Description

seL4 CPtr dest The capability to be invoked.
seL4 MessageInfo t msgInfo The messageinfo structure for the IPC.

Return value: A seL4 MessageInfo t structure as described in Section 4.1

Description: See Section 2.2

10.2.4 Reply

LIBSEL4 INLINE FUNC void seL4 Reply

Perform a send to a one-off reply capability stored when the thread was last called.

Type Name Description

seL4 MessageInfo t msgInfo The messageinfo structure for the IPC.

Return value: This method does not return anything.

Description: See Section 2.2

10.2.5 Polling Send

LIBSEL4 INLINE FUNC void seL4 NBSend

Perform a polling send to a capability.

Type Name Description

seL4 CPtr dest The capability to be invoked.
seL4 MessageInfo t msgInfo The messageinfo structure for the IPC.

Return value: This method does not return anything.

Description: See Section 2.2

50 CHAPTER 10. SEL4 API REFERENCE

10.2.6 Reply Recv

LIBSEL4 INLINE FUNC seL4 MessageInfo t seL4 ReplyRecv

Perform a reply followed by a receive in one system call.

Type Name Description

seL4 CPtr dest The capability to be invoked.
seL4 MessageInfo t msgInfo The messageinfo structure for the IPC.
seL4 Word * sender The address to write sender information to.

The sender information is the badge of the
endpoint capability that was invoked by the
sender, or the notification word of the noti-
fication object that was signalled. This pa-
rameter is ignored if NULL.

Return value: A seL4 MessageInfo t structure as described in Section 4.1

Description: See Section 2.2

10.2.7 NBRecv

LIBSEL4 INLINE FUNC seL4 MessageInfo t seL4 NBRecv

Receive a message from an endpoint but do not block in the case that no messages are
pending.

Type Name Description

seL4 CPtr src The capability to be invoked.
seL4 Word * sender The address to write sender information to. The

sender information is the badge of the endpoint capa-
bility that was invoked by the sender, or the notifica-
tion word of the notification object that was signalled.
This parameter is ignored if NULL.

Return value: A seL4 MessageInfo t structure as described in Section 4.1

Description: See Section 2.2

10.2. SYSTEM CALLS 51

10.2.8 Yield

LIBSEL4 INLINE FUNC void seL4 Yield

Donate the remaining timeslice to a thread of the same priority.

Type Name Description

void

Return value: This method does not return anything.

Description: See Section 2.2

10.2.9 Signal

LIBSEL4 INLINE FUNC void seL4 Signal

Signal a notification.

Type Name Description

seL4 CPtr dest The capability to be invoked.

Return value: This method does not return anything.

Description: This is not a proper system call known by the kernel. Rather, it is a
convenience wrapper which calls seL4 Send(). It is useful for signalling a notification.
See the description of seL4 Send() in Section 2.2.

52 CHAPTER 10. SEL4 API REFERENCE

10.2.10 Wait

LIBSEL4 INLINE FUNC void seL4 Wait

Perform a receive on a notification object.

Type Name Description

seL4 CPtr src The capability to be invoked.
seL4 Word * sender The address to write sender information to. The

sender information is the badge of the endpoint capa-
bility that was invoked by the sender, or the notifica-
tion word of the notification object that was signalled.
This parameter is ignored if NULL.

Return value: This method does not return anything.

Description: This is not a proper system call known by the kernel. Rather, it is a
convenience wrapper which calls seL4 Recv(). See the description of seL4 Recv() in
Section 2.2.

10.2.11 Poll

LIBSEL4 INLINE FUNC seL4 MessageInfo t seL4 Poll

Perform a non-blocking recv on a notification object.

Type Name Description

seL4 CPtr src The capability to be invoked.
seL4 Word * sender The address to write sender information to. The

sender information is the badge of the endpoint capa-
bility that was invoked by the sender, or the notifica-
tion word of the notification object that was signalled.
This parameter is ignored if NULL.

Return value: This method does not return anything.

Description: This is not a proper system call known by the kernel. Rather, it is a
convenience wrapper which calls seL4 NBRecv(). It is useful for doing a non-blocking
wait on a notification. See the description of seL4 NBRecv() in Section 2.2.

10.3. ARCHITECTURE-INDEPENDENT OBJECT METHODS 53

10.3 Architecture-Independent Object Methods

10.3.1 CNode - Cancel Badged Sends

static inline int seL4 CNode CancelBadgedSends

The cancel badged sends method is intend to allow for the reuse of badges by an
authority. When used with a badged endpoint capability it will cancel any outstanding
send operations for that endpoint and badge. This operation has no effect on un-badged
or other objects.

Type Name Description

seL4 CNode service CPTR to the CNode at the root of the CSpace where
the capability will be found. Must be at a depth of
32.

seL4 Word index CPTR to the capability. Resolved from the root of
the service parameter.

seL4 Uint8 depth Number of bits of index to resolve to find the capa-
bility being operated on.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 3.1.2.

54 CHAPTER 10. SEL4 API REFERENCE

10.3.2 CNode - Copy

static inline int seL4 CNode Copy

Copy a capability, setting its access rights whilst doing so

Type Name Description

seL4 CNode service CPTR to the CNode that forms the root of
the destination CSpace. Must be at a depth
of 32.

seL4 Word dest index CPTR to the destination slot. Resolved
from the root of the destination CSpace.

seL4 Uint8 dest depth Number of bits of dest index to resolve to
find the destination slot.

seL4 CNode src root CPTR to the CNode that forms the root of
the source CSpace. Must be at a depth of
32.

seL4 Word src index CPTR to the source slot. Resolved from the
root of the source CSpace.

seL4 Uint8 src depth Number of bits of src index to resolve to find
the source slot.

seL4 CapRights t rights The rights inherited by the new capability.
Possible values for this type are given in Sec-
tion 3.1.4 .

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 3.1.2.

10.3. ARCHITECTURE-INDEPENDENT OBJECT METHODS 55

10.3.3 CNode - Delete

static inline int seL4 CNode Delete

Delete a capability

Type Name Description

seL4 CNode service CPTR to the CNode at the root of the CSpace where
the capability will be found. Must be at a depth of
32.

seL4 Word index CPTR to the capability. Resolved from the root of
the service parameter.

seL4 Uint8 depth Number of bits of index to resolve to find the capa-
bility being operated on.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 3.1.2.

56 CHAPTER 10. SEL4 API REFERENCE

10.3.4 CNode - Mint

static inline int seL4 CNode Mint

Copy a capability, setting its access rights and badge whilst doing so

Type Name Description

seL4 CNode service CPTR to the CNode that forms the root of
the destination CSpace. Must be at a depth
of 32.

seL4 Word dest index CPTR to the destination slot. Resolved
from the root of the destination CSpace.

seL4 Uint8 dest depth Number of bits of dest index to resolve to
find the destination slot.

seL4 CNode src root CPTR to the CNode that forms the root of
the source CSpace. Must be at a depth of
32.

seL4 Word src index CPTR to the source slot. Resolved from the
root of the source CSpace.

seL4 Uint8 src depth Number of bits of src index to resolve to find
the source slot.

seL4 CapRights t rights The rights inherited by the new capability.
Possible values for this type are given in Sec-
tion 3.1.4 .

seL4 CapData t badge Badge or guard to be applied to the new
capability. For badges the high 4 bits are
ignored.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 3.1.2.

10.3. ARCHITECTURE-INDEPENDENT OBJECT METHODS 57

10.3.5 CNode - Move

static inline int seL4 CNode Move

Move a capability

Type Name Description

seL4 CNode service CPTR to the CNode that forms the root of the
destination CSpace. Must be at a depth of 32.

seL4 Word dest index CPTR to the destination slot. Resolved from the
root of the destination CSpace.

seL4 Uint8 dest depth Number of bits of dest index to resolve to find the
destination slot.

seL4 CNode src root CPTR to the CNode that forms the root of the
source CSpace. Must be at a depth of 32.

seL4 Word src index CPTR to the source slot. Resolved from the root
of the source CSpace.

seL4 Uint8 src depth Number of bits of src index to resolve to find the
source slot.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 3.1.2.

58 CHAPTER 10. SEL4 API REFERENCE

10.3.6 CNode - Mutate

static inline int seL4 CNode Mutate

Move a capability, setting its badge in the process

Type Name Description

seL4 CNode service CPTR to the CNode that forms the root of the
destination CSpace. Must be at a depth of 32.

seL4 Word dest index CPTR to the destination slot. Resolved from
the root of the destination CSpace.

seL4 Uint8 dest depth Number of bits of dest index to resolve to find
the destination slot.

seL4 CNode src root CPTR to the CNode that forms the root of the
source CSpace. Must be at a depth of 32.

seL4 Word src index CPTR to the source slot. Resolved from the
root of the source CSpace.

seL4 Uint8 src depth Number of bits of src index to resolve to find
the source slot.

seL4 CapData t badge Badge or guard to be applied to the new capa-
bility. For badges the high 4 bits are ignored.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 3.1.2.

10.3. ARCHITECTURE-INDEPENDENT OBJECT METHODS 59

10.3.7 CNode - Revoke

static inline int seL4 CNode Revoke

Delete all child capabilities of a capability

Type Name Description

seL4 CNode service CPTR to the CNode at the root of the CSpace where
the capability will be found. Must be at a depth of
32.

seL4 Word index CPTR to the capability. Resolved from the root of
the service parameter.

seL4 Uint8 depth Number of bits of index to resolve to find the capa-
bility being operated on.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 3.1.2.

60 CHAPTER 10. SEL4 API REFERENCE

10.3.8 CNode - Rotate

static inline int seL4 CNode Rotate

Given 3 capability slots - a destination, pivot and source - move the capability in the
pivot slot to the destination slot and the capability in the source slot to the pivot slot

Type Name Description

seL4 CNode service CPTR to the CNode at the root of the
CSpace where the destination slot will be
found. Must be at a depth of 32.

seL4 Word dest index CPTR to the destination slot. Resolved rel-
ative to service. Must be empty unless it
refers to the same slot as the source slot.

seL4 Uint8 dest depth Depth to resolve dest index to.
seL4 CapData t dest badge The new capdata for the capability that ends

up in the destination slot.
seL4 CNode pivot root CPTR to the CNode at the root of the

CSpace where the pivot slot will be found.
Must be at a depth of 32.

seL4 Word pivot index CPTR to the pivot slot. Resolved relative to
pivot root. The resolved slot must not refer
to the source or destination slots.

seL4 Uint8 pivot depth Depth to resolve pivot index to.
seL4 CapData t pivot badge The new capdata for the capability that ends

up in the pivot slot.
seL4 CNode src root CPTR to the CNode at the root of the

CSpace where the source slot will be found.
Must be at a depth of 32.

seL4 Word src index CPTR to the source slot. Resolved relative
to src root.

seL4 Uint8 src depth Depth to resolve src index to.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 3.1.2.

10.3. ARCHITECTURE-INDEPENDENT OBJECT METHODS 61

10.3.9 CNode - Save Caller

static inline int seL4 CNode SaveCaller

Save the reply capability from the last time the thread was called in the given CSpace
so that it can be invoked later

Type Name Description

seL4 CNode service CPTR to the CNode at the root of the CSpace where
the capability is to be saved. Must be at a depth of
32.

seL4 Word index CPTR to the slot in which to save the capability.
Resolved from the root of the service parameter.

seL4 Uint8 depth Number of bits of index to resolve to find the slot
being targeted.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 3.1.2.

10.3.10 Domain Set - Set

static inline int seL4 DomainSet Set

Change the domain of a thread.

Type Name Description

seL4 DomainSet service Capability allowing domain configuration.
seL4 Uint8 domain The thread’s new domain.
seL4 TCB thread Capability to the TCB which is being operated

on.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 6.3.

62 CHAPTER 10. SEL4 API REFERENCE

10.3.11 IRQ Control - Get

static inline int seL4 IRQControl Get

Create an IRQ handler capability

Type Name Description

seL4 IRQControl service An IRQControl capability. This gives you the
authority to make this call.

int irq The IRQ that you want this capability to han-
dle.

seL4 CNode root CPTR to the CNode that forms the root of the
destination CSpace. Must be at a depth of 32.

seL4 Word index CPTR to the destination slot. Resolved from
the root of the destination CSpace.

seL4 Uint8 depth Number of bits of dest index to resolve to find
the destination slot.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 8.1.

10.3.12 IRQ Handler - Acknowledge

static inline int seL4 IRQHandler Ack

Acknowledge the receipt of an interrupt and re-enable it

Type Name Description

seL4 IRQHandler service The IRQ handler capability.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 8.1.

10.3. ARCHITECTURE-INDEPENDENT OBJECT METHODS 63

10.3.13 IRQ Handler - Clear

static inline int seL4 IRQHandler Clear

Clear the handler capability from the IRQ slot

Type Name Description

seL4 IRQHandler service The IRQ handler capability.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 8.1.

10.3.14 IRQ Handler - Set Notification

static inline int seL4 IRQHandler SetNotification

Set the notification which the kernel will signal on interrupts controlled by the supplied
IRQ handler capability

Type Name Description

seL4 IRQHandler service The IRQ handler capability.
seL4 CPtr notification The notification which the IRQs will sig-

nal.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 8.1.

64 CHAPTER 10. SEL4 API REFERENCE

10.3.15 TCB - Bind Notification

static inline int seL4 TCB BindNotification

Binds a notification object to a TCB

Type Name Description

seL4 TCB service Capability to the TCB which is being operated
on.

seL4 CPtr notification Notification to bind.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 5.3

10.3. ARCHITECTURE-INDEPENDENT OBJECT METHODS 65

10.3.16 TCB - Configure Single Stepping

static inline seL4 TCB ConfigureSingleStepping t seL4 TCB ConfigureSingleStep-

ping

Set or modify single stepping options for the target TCB. Subsequent calls to this
function overwrite previous configuration. Depending on your processor architecture,
this may or may not require the consumption of a hardware register.

Type Name Description

seL4 TCB service Capability to the TCB which is being op-
erated on.

seL4 Uint16 bp num The API-ID of a target breakpoint. This
ID will be a positive integer, with val-
ues ranging from 0 to seL4 NumHWBreak-
points - 1.

seL4 Word num instructions Number of instructions to step over be-
fore delivering a fault to the target thread’s
fault endpoint. Setting this to 0 disables
single-stepping.

Return value: A seL4 TCB ConfigureSingleStepping t: Struct that contains ‘seL4 -

Error error’, an seL4 API error value, ‘seL4 Bool bp was consumed’, a boolean
which indicates whether or not the bp num breakpoint ID that was passed to the
function, was consumed in the setup of the single-stepping functionality: if this is
true, the caller should not attempt to re-use bp num until it has disabled the single-
stepping functionality via a subsequent call to seL4 TCB ConfigureSingleStepping with
an num instructions argument of 0.

Description: See Sections 6.2.5 and 6.2.4

66 CHAPTER 10. SEL4 API REFERENCE

10.3.17 TCB - Configure

static inline int seL4 TCB Configure

Set the parameters of a TCB

Type Name Description

seL4 TCB service Capability to the TCB which is being
operated on.

seL4 Word fault ep CPTR to the endpoint which receives
IPCs when this thread faults. This
capability is in the CSpace of the
thread being configured.

seL4 PrioProps t priority The thread’s new priority.
seL4 CNode cspace root The new CSpace root.
seL4 CapData t cspace root data Optionally set the guard and guard

size of the new root CNode. If set to
zero, this parameter has no effect.

seL4 CNode vspace root The new VSpace root.
seL4 CapData t vspace root data Has no effect on x86 or ARM proces-

sors.
seL4 Word buffer Location of the thread’s IPC buffer.

Must be 512-byte aligned. The IPC
buffer may not cross a page bound-
ary.

seL4 CPtr bufferFrame Capability to a page containing the
thread’s IPC buffer.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 6.1

10.3. ARCHITECTURE-INDEPENDENT OBJECT METHODS 67

10.3.18 TCB - Copy Registers

static inline int seL4 TCB CopyRegisters

Copy the registers from one thread to another

Type Name Description

seL4 TCB service Capability to the TCB which is being oper-
ated on. This is the destination TCB.

seL4 TCB source Cap to the source TCB.
seL4 Bool suspend source The invocation should also suspend the

source thread.
seL4 Bool resume target The invocation should also resume the des-

tination thread.
seL4 Bool transfer frame Frame registers should be transferred.
seL4 Bool transfer integer Integer registers should be transferred.
seL4 Uint8 arch flags Architecture dependent flags. These have

no mearing on either x86 or ARM.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: In the context of this function, frame registers are those that are read,
modified or preserved by a system call and integer registers are those that are not.
Refer to the seL4 userland library source for specifics. Section 6.1.2

68 CHAPTER 10. SEL4 API REFERENCE

10.3.19 TCB - Get Breakpoint

static inline seL4 TCB GetBreakpoint t seL4 TCB GetBreakpoint

Read a breakpoint or watchpoint’s current configuration.

Type Name Description

seL4 TCB service Capability to the TCB which is being operated on.
seL4 Uint16 bp num The API-ID of a target breakpoint. This ID will

be a positive integer, with values ranging from 0 to
seL4 NumHWBreakpoints - 1.

Return value: A seL4 TCB GetBreakpoint t: Struct that contains ‘seL4 Error er-

ror’, an seL4 API error value, ‘seL4 Word vaddr’, the virtual address at which the
breakpoint will currently be triggered; ‘seL4 Word type’, the type of operation which
will currently trigger the breakpoint, whether instruction execution, or data access;
‘seL4 Word size’, integer value for the span-size of the breakpoint. Usually a power
of two (1, 2, 4, etc.); ‘seL4 Word rw’, the access direction that will currently trigger
the breakpoint, whether read, write, or both and ‘seL4 Bool is enabled’, which indi-
cates whether or not the breakpoint will currently be triggered if the match conditions
are met.

Description: See Section 6.2.4

10.3. ARCHITECTURE-INDEPENDENT OBJECT METHODS 69

10.3.20 TCB - Read Registers

static inline int seL4 TCB ReadRegisters

Read a thread’s registers into the first count fields of a given seL4 UserContext

Type Name Description

seL4 TCB service Capability to the TCB which is be-
ing operated on.

seL4 Bool suspend source The invocation should also suspend
the source thread.

seL4 Uint8 arch flags Architecture dependent flags. These
have no mearing on either x86 or
ARM.

seL4 Word count The number of registers to read.
seL4 UserContext * regs The structure to read the registers

into.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 6.1.5

10.3.21 TCB - Resume

static inline int seL4 TCB Resume

Resume a thread

Type Name Description

seL4 TCB service Capability to the TCB which is being operated on.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 6.1.2

70 CHAPTER 10. SEL4 API REFERENCE

10.3.22 TCB - Set Breakpoint

static inline int seL4 TCB SetBreakpoint

Set or modify a thread’s breakpoints or watchpoints. Calls to this function overwrite
previous configurations for the target breakpoint. Do not use this with seL4 SingleStep:
the API will reject the call and return an error. Instead, use seL4 TCB ConfigureSin-
gleStepping to configure single-stepping.

Type Name Description

seL4 TCB service Capability to the TCB which is being operated on.
seL4 Uint16 bp num The API-ID of a target breakpoint. This ID will

be a positive integer, with values ranging from 0 to
seL4 NumHWBreakpoints - 1.

seL4 Word vaddr A virtual address which forms part of the match
conditions for the triggering of the breakpoint.

seL4 Word type One of: seL4 InstructionBreakpoint, which specifies
that the breakpoint should occur on instruction ex-
ecution at the specified vaddr or seL4 DataBreak-
point, which states that the breakpoint should occur
on data access at the specified vaddr.

seL4 Word size A positive integer indicating the trigger-span of the
watchpoint. Must be zero when ’type’ is seL4 In-
structionBreakpoint.

seL4 Word rw One of seL4 BreakOnRead, meaning the breakpoint
will only be triggered on read-access; seL4 BreakOn-
Write meaning the breakpoint will only be trig-
gered on write-access, and seL4 BreakOnReadWrite
meaning the breakpoint will be triggered on any ac-
cess.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 6.2.4

10.3. ARCHITECTURE-INDEPENDENT OBJECT METHODS 71

10.3.23 TCB - Set CPU Affinity

static inline int seL4 TCB SetAffinity

Change a thread’s current CPU in multicore machine

Type Name Description

seL4 TCB service Capability to the TCB which is being operated on.
seL4 Word affinity The thread’s new CPU to run.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 6.1.1

10.3.24 TCB - Set IPC Buffer

static inline int seL4 TCB SetIPCBuffer

Set a thread’s IPC buffer

Type Name Description

seL4 TCB service Capability to the TCB which is being operated on.
seL4 Word buffer Location of the thread’s IPC buffer. Must be 512-

byte aligned. The IPC buffer may not cross a page
boundary.

seL4 CPtr bufferFrame Capability to a page containing the thread’s IPC
buffer.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Sections 6.1 and 4.1

72 CHAPTER 10. SEL4 API REFERENCE

10.3.25 TCB - Set Maximum Controlled Priority

static inline int seL4 TCB SetMCPriority

Change a thread’s maximum controlled priority

Type Name Description

seL4 TCB service Capability to the TCB which is being operated on.
seL4 Uint8 mcp The thread’s new maximum controlled priority.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 6.1.3

10.3.26 TCB - Set Priority

static inline int seL4 TCB SetPriority

Change a thread’s priority

Type Name Description

seL4 TCB service Capability to the TCB which is being operated on.
seL4 Uint8 priority The thread’s new priority.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 6.1.3

10.3. ARCHITECTURE-INDEPENDENT OBJECT METHODS 73

10.3.27 TCB - Set Space

static inline int seL4 TCB SetSpace

Set the fault endpoint, CSpace and VSpace of a thread

Type Name Description

seL4 TCB service Capability to the TCB which is being
operated on.

seL4 Word fault ep CPTR to the endpoint which receives
IPCs when this thread faults. This ca-
pability is in the CSpace of the thread
being configured.

seL4 CNode cspace root The new CSpace root.
seL4 CapData t cspace root data Optionally set the guard and guard size

of the new root CNode. If set to zero,
this parameter has no effect.

seL4 CNode vspace root The new VSpace root.
seL4 CapData t vspace root data Has no effect on x86 or ARM proces-

sors.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 6.1

10.3.28 TCB - Suspend

static inline int seL4 TCB Suspend

Suspend a thread

Type Name Description

seL4 TCB service Capability to the TCB which is being operated on.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 6.1.2

74 CHAPTER 10. SEL4 API REFERENCE

10.3.29 TCB - Unbind Notification

static inline int seL4 TCB UnbindNotification

Unbinds any notification object from a TCB

Type Name Description

seL4 TCB service Capability to the TCB which is being operated on.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 5.3

10.3.30 TCB - Unset Breakpoint

static inline int seL4 TCB UnsetBreakpoint

Disables a hardware breakpoint or watchpoint. The caller should assume that the
underlying configuration of the hardware registers has also been cleared. Do not use
this to clear single-stepping: the API will reject the call and return an error. Instead,
use seL4 TCB ConfigureSingleStepping to disable single-stepping.

Type Name Description

seL4 TCB service Capability to the TCB which is being operated on.
seL4 Uint16 bp num The API-ID of a target breakpoint. This ID will

be a positive integer, with values ranging from 0 to
seL4 NumHWBreakpoints - 1.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 6.2.4

10.3. ARCHITECTURE-INDEPENDENT OBJECT METHODS 75

10.3.31 TCB - Write Registers

static inline int seL4 TCB WriteRegisters

Set a thread’s registers to the first count fields of a given seL4 UserContext

Type Name Description

seL4 TCB service Capability to the TCB which is being
operated on.

seL4 Bool resume target The invocation should also resume
the destination thread.

seL4 Uint8 arch flags Architecture dependent flags. These
have no mearing on either x86 or
ARM.

seL4 Word count The number of registers to be set.
seL4 UserContext * regs Data structure containing the new

register values.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 6.1.5

76 CHAPTER 10. SEL4 API REFERENCE

10.3.32 Untyped - Retype

static inline int seL4 Untyped Retype

Retype an untyped object

Type Name Description

seL4 Untyped service CPTR to an untyped object.
seL4 Word type The seL4 object type that we are retyping to.
seL4 Word size bits Used to determine the size of variable-sized ob-

jects.
seL4 CNode root CPTR to the CNode at the root of the destina-

tion CSpace.
seL4 Word node index CPTR to the destination CNode. Resolved rel-

ative to the root parameter.
seL4 Word node depth Number of bits of node index to translate when

addressing the destination CNode.
seL4 Word node offset Number of slots into the node at which capa-

bilities start being placed.
seL4 Word num objects Number of capabilities to create.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: Given a capability, service, to an untyped object, creates num objects

of the requested type. Creates num objects capabilities to the new objects starting at
node offset in the CNode specified by root, node index, and node depth.

For variable-sized kernel objects, the size bits argument is used to determine the size
of objects to create. The relationship between size bits and object size depends on
the type of object being created. See Section 2.4.2 for more information about object
sizes.

See Section 2.4 for more information about how untyped memory is retyped.

See Section 3.1.3 for more information about the placement of capabilities to created
objects.

10.4. IA-32-SPECIFIC OBJECT METHODS 77

10.4 IA-32-Specific Object Methods

10.4.1 IA32 ASID Control - Make Pool

static inline int seL4 IA32 ASIDControl MakePool

Create an IA-32 ASID pool

Type Name Description

seL4 IA32 ASIDControl service The master ASIDControl capability.
seL4 Untyped untyped Capability to an untyped memory object

that will become the pool. Must be 4K
bytes.

seL4 CNode root CPTR to the CNode that forms the root
of the destination CSpace. Must be at a
depth of 32.

seL4 Word index CPTR to the destination slot. Resolved
from the root of the destination CSpace.

uint8 t depth Number of bits of index to resolve to find
the destination slot.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Chapter 7

10.4.2 IA32 ASID Pool - Assign

static inline int seL4 IA32 ASIDPool Assign

Assign an ASID pool

Type Name Description

seL4 IA32 ASIDPool service The ASID pool which is being as-
signed to. Must not be full. Each
ASID pool can contain 1024 entries.

seL4 IA32 PageDirectory vroot The page directory that is being as-
signed to an ASID pool. Must not al-
ready be assigned to an ASID pool.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Chapter 7

78 CHAPTER 10. SEL4 API REFERENCE

10.4.3 IA32 IO Port - In 8

static inline seL4 IA32 IOPort In8 t seL4 IA32 IOPort In8

Read 8 bits from an IO port

Type Name Description

seL4 IA32 IOPort service An IO port capability.
uint16 t port The port to read from.

Return value: A seL4 IA32 IOPort In8 t structure as described in Section 8.2.2

Description: See Section 8.2.2

10.4.4 IA32 IO Port - In 16

static inline seL4 IA32 IOPort In16 t seL4 IA32 IOPort In16

Read 16 bits from an IO port

Type Name Description

seL4 IA32 IOPort service An IO port capability.
uint16 t port The port to read from.

Return value: A seL4 IA32 IOPort In16 t structure as described in Section 8.2.2

Description: See Section 8.2.2

10.4.5 IA32 IO Port - In 32

static inline seL4 IA32 IOPort In32 t seL4 IA32 IOPort In32

Read 32 bits from an IO port

Type Name Description

seL4 IA32 IOPort service An IO port capability.
uint16 t port The port to read from.

Return value: A seL4 IA32 IOPort In32 t structure as described in Section 8.2.2

Description: See Section 8.2.2

10.4. IA-32-SPECIFIC OBJECT METHODS 79

10.4.6 IA32 IO Port - Out 8

static inline int seL4 IA32 IOPort Out8

Write 8 bits to an IO port

Type Name Description

seL4 IA32 IOPort service An IO port capability.
uint16 t port The port to write to.
uint8 t data Data to write to the IO port.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 8.2.2

10.4.7 IA32 IO Port - Out 16

static inline int seL4 IA32 IOPort Out16

Write 16 bits to an IO port

Type Name Description

seL4 IA32 IOPort service An IO port capability.
uint16 t port The port to write to.
uint16 t data Data to write to the IO port.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 8.2.2

80 CHAPTER 10. SEL4 API REFERENCE

10.4.8 IA32 IO Port - Out 32

static inline int seL4 IA32 IOPort Out32

Write 32 bits to an IO port

Type Name Description

seL4 IA32 IOPort service An IO port capability.
uint16 t port The port to write to.
uint32 t data Data to write to the IO port.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 8.2.2

10.4.9 IA32 IO Page Table - Map

static inline int seL4 IA32 IOPageTable Map

Map a page table into an IOSpace

Type Name Description

seL4 IA32 IOPageTable service The page table that is being mapped.
seL4 IA32 IOSpace iospace The IOSpace that the page table is being

mapped into.
seL4 Word ioaddr The address that the page table is being

mapped at.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 8.2.3

10.4. IA-32-SPECIFIC OBJECT METHODS 81

10.4.10 IA32 Page - Map IO

static inline int seL4 IA32 Page MapIO

Map a page into an IOSpace

Type Name Description

seL4 IA32 Page service The frame that is being mapped.
seL4 IA32 IOSpace iospace The IOSpace that the frame is being mapped

into.
seL4 CapRights rights Rights for the mapping. Possible values for

this type are given in Section 3.1.4.
seL4 Word ioaddr The address that the frame is being mapped

at.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 8.2.3

10.4.11 IA32 Page - Map

static inline int seL4 IA32 Page Map

Map a page into an address space

Type Name Description

seL4 IA32 Page service Capability to the page to map.
seL4 IA32 PageDirectory pd Capability to the VSpace which will

contain the mapping.
seL4 Word vaddr Virtual address to map the page into.
seL4 CapRights rights Rights for the mapping. Possible val-

ues for this type are given in Sec-
tion 3.1.4.

seL4 IA32 VMAttributes attr VM Attributes for the mapping. Pos-
sible values for this type are given in
Chapter 7.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Chapter 7

82 CHAPTER 10. SEL4 API REFERENCE

10.4.12 IA32 Page - Remap

static inline int seL4 IA32 Page Remap

Remap a page

Type Name Description

seL4 IA32 Page service Capability to the page to map.
seL4 IA32 PageDirectory pd Capability to the VSpace which will

contain the mapping.
seL4 CapRights rights Rights for the mapping. Possible val-

ues for this type are given in Sec-
tion 3.1.4.

seL4 IA32 VMAttributes attr VM Attributes for the mapping. Pos-
sible values for this type are given in
Chapter 7.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Chapter 7

10.4.13 IA32 Page - Unmap

static inline int seL4 IA32 Page Unmap

Unmap a page

Type Name Description

seL4 IA32 Page service Capability to the page to unmap.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Chapter 7

10.4. IA-32-SPECIFIC OBJECT METHODS 83

10.4.14 IA32 Page - Get Address

static inline seL4 IA32 Page GetAddress t seL4 IA32 Page GetAddress

Get the physical address of the underlying frame

Type Name Description

seL4 IA32 Page service Capability to the page to lookup.

Return value: A seL4 IA32 Page GetAddress t struct that contains seL4 Word paddr,
which holds the physical address of the page, and int error. See Section 10.1 for a
description of the message register and tag contents upon error.

Description: See Chapter 7

10.4.15 IA32 Page Table - Map

static inline int seL4 IA32 PageTable Map

Map a page table into an address space

Type Name Description

seL4 IA32 PageTable service Capability to the page table to map.
seL4 IA32 PageDirectory pd Capability to the VSpace which will

contain the mapping.
seL4 Word vaddr Virtual address to map the page into.
seL4 IA32 VMAttributes attr VM Attributes for the mapping. Pos-

sible values for this type are given in
Chapter 7.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Chapter 7

84 CHAPTER 10. SEL4 API REFERENCE

10.4.16 IA32 Page Table - Unmap

static inline int seL4 IA32 PageTable Unmap

Unmap a page table from its address space and zero it out

Type Name Description

seL4 IA32 PageTable service Capability to the page table to unmap.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Chapter 7

10.4.17 X86 Page Directory - Get Status Bits

static inline int seL4 X86 PageDirectory GetStatusBits

Retrieved the accessed and dirty bits of a page mapped mapped into an address space

Type Name Description

seL4 X86 PageDirectory service Capability to the address space to
query.

seL4 Word vaddr Virtual address of the page to query

Return value: A seL4 X86 PageDirectory GetStatusBits t structure

Description: See Chapter 7

10.4. IA-32-SPECIFIC OBJECT METHODS 85

10.4.18 IRQ Control - GetIOAPIC

static inline int seL4 IRQControl GetIOAPIC

Create an IRQ handler capability for an interrupt from an IOAPIC

Type Name Description

seL4 IRQControl service An IRQControl capability. This gives you the
authority to make this call.

int irq The IRQ that you want this capability to han-
dle.

seL4 CNode root CPTR to the CNode that forms the root of the
destination CSpace. Must be at a depth of 32.

seL4 Word index CPTR to the destination slot. Resolved from
the root of the destination CSpace.

uint8 t depth Number of bits of dest index to resolve to find
the destination slot.

seL4 Word ioapic Zero based index of IOAPIC to get interrupt
from, ordered the same as in ACPI tables

seL4 Word pin IOAPIC pin that generates the interrupt
seL4 Word level Indicates whether the IOAPIC should be pro-

grammed to treat this interrupt as level trig-
gered

seL4 Word polarity Indicates whether the IOAPIC should be pro-
grammed to treat this interrupt as high or low
triggered

seL4 Word vector CPU vector to deliver the interrupt to

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 8.1, Section 8.2.1

86 CHAPTER 10. SEL4 API REFERENCE

10.4.19 IRQ Control - GetMSI

static inline int seL4 IRQControl GetMSI

Create an IRQ handler capability for an interrupt from an MSI

Type Name Description

seL4 IRQControl service An IRQControl capability. This gives you the
authority to make this call.

int irq The IRQ that you want this capability to han-
dle.

seL4 CNode root CPTR to the CNode that forms the root of the
destination CSpace. Must be at a depth of 32.

seL4 Word index CPTR to the destination slot. Resolved from
the root of the destination CSpace.

uint8 t depth Number of bits of dest index to resolve to find
the destination slot.

seL4 Word pci bus PCI bus ID of the device that will generate the
interrupt

seL4 Word pci dev PCI device ID of the device that will generate
the interrupt

seL4 Word pci func PCI function ID of the device that will generate
the interrupt

seL4 Word handle Value of the handle programmed into the data
portion of the MSI

seL4 Word vector CPU vector to deliver the interrupt to

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 8.1, Section 8.2.1

10.5. ARM-SPECIFIC OBJECT METHODS 87

10.5 ARM-Specific Object Methods

10.5.1 ARM ASID Control - Make Pool

static inline int seL4 ARM ASIDControl MakePool

Create an ASID Pool

Type Name Description

seL4 ARM ASIDControl service The master ASIDControl capability.
seL4 Untyped untyped Capability to an untyped memory object

that will become the pool. Must be 4K
bytes.

seL4 CNode root CPTR to the CNode that forms the root
of the destination CSpace. Must be at a
depth of 32.

seL4 Word index CPTR to the destination slot. Resolved
from the root of the destination CSpace.

uint8 t depth Number of bits of index to resolve to find
the destination slot.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Chapter 7

10.5.2 ARM ASID Pool - Assign

static inline int seL4 ARM ASIDPool Assign

Assign an ASID Pool

Type Name Description

seL4 ARM ASIDPool service The ASID pool which is being assigned
to. Must not be full. Each ASID pool
can contain 1024 entries.

seL4 ARM PageDirectory vroot The page directory that is being as-
signed to an ASID pool. Must not al-
ready be assigned to an ASID pool.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Chapter 7

88 CHAPTER 10. SEL4 API REFERENCE

10.5.3 ARM Page - Clean Data

static inline int seL4 ARM Page Clean Data

Cleans the data cache out to RAM. The start and end are relative to the page being
serviced.

Type Name Description

seL4 ARM Page service The page whose contents will be flushed.
seL4 Word start offset The offset, relative to the start of the page

inclusive.
seL4 Word end offset The offset, relative to the start of the page

exclusive.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Chapter 7

10.5.4 ARM Page - Invalidate Data

static inline int seL4 ARM Page Invalidate Data

Invalidates the cache range within the given page. The start and end are relative to
the page being serviced and should be aligned to a cache line boundary where possible.
An additional clean is performed on the outer cache lines if the start and end are not
aligned, to clean out the bytes between the requested and the cache line boundary.

Type Name Description

seL4 ARM Page service The page whose contents will be flushed.
seL4 Word start offset The offset, relative to the start of the page

inclusive.
seL4 Word end offset The offset, relative to the start of the page

exclusive.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Chapter 7

10.5. ARM-SPECIFIC OBJECT METHODS 89

10.5.5 ARM Page - Clean and Invalidate Data

static inline int seL4 ARM Page CleanInvalidate Data

Clean and invalidates the cache range within the given page. The range will be flushed
out to RAM. The start and end are relative to the page being serviced.

Type Name Description

seL4 ARM Page service The page whose contents will be flushed.
seL4 Word start offset The offset, relative to the start of the page

inclusive.
seL4 Word end offset The offset, relative to the start of the page

exclusive.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Chapter 7

10.5.6 ARM Page - Unify Instruction Cache

static inline int seL4 ARM Page Unify Instruction

Unify Instruction Cache. Cleans data lines to point of unification, invalidate corre-
sponding instruction lines to point of unification, then invalidates branch predictors.
The start and end are relative to the page being serviced.

Type Name Description

seL4 ARM Page service The page whose contents will be flushed.
seL4 Word start offset The offset, relative to the start of the page

inclusive.
seL4 Word end offset The offset, relative to the start of the page

exclusive.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Chapter 7

90 CHAPTER 10. SEL4 API REFERENCE

10.5.7 ARM Page - Map

static inline int seL4 ARM Page Map

Map a page into an address space

Type Name Description

seL4 ARM Page service Capability to the page to map.
seL4 ARM PageDirectory pd Capability to the VSpace which will

contain the mapping.
seL4 Word vaddr Virtual address to map the page into.
seL4 CapRights rights Rights for the mapping. Possible values

for this type are given in Section 3.1.4.
seL4 ARM VMAttributes attr VM Attributes for the mapping. Pos-

sible values for this type are given in
Chapter 7.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Chapter 7

10.5.8 ARM Page - Remap

static inline int seL4 ARM Page Remap

Remap a page

Type Name Description

seL4 ARM Page service Capability to the page to remap.
seL4 ARM PageDirectory pd Capability to the VSpace which will

contain the mapping.
seL4 CapRights rights Rights for the mapping. Possible values

for this type are given in Section 3.1.4.
seL4 ARM VMAttributes attr VM Attributes for the mapping. Pos-

sible values for this type are given in
Chapter 7.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Chapter 7

10.5. ARM-SPECIFIC OBJECT METHODS 91

10.5.9 ARM Page - Unmap

static inline int seL4 ARM Page Unmap

Unmap a page

Type Name Description

seL4 ARM Page service Capability to the page to unmap.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Chapter 7

10.5.10 ARM Page - Get Address

static inline seL4 ARM Page GetAddress t seL4 ARM Page GetAddress

Get the physical address of the underlying frame

Type Name Description

seL4 ARM Page service Capability to the page to lookup.

Return value: A seL4 ARM Page GetAddress t struct that contains seL4 Word paddr,
which holds the physical address of the page, and int error. See Section 10.1 for a
description of the message register and tag contents upon error.

Description: See Chapter 7

92 CHAPTER 10. SEL4 API REFERENCE

10.5.11 ARM Page Table - Map

static inline int seL4 ARM PageTable Map

Map a page table into an address space

Type Name Description

seL4 ARM PageTable service Capability to the page table that will
be mapped.

seL4 ARM PageDirectory pd Capability to the VSpace which will
contain the mapping.

seL4 Word vaddr Virtual address to map the page into.
seL4 ARM VMAttributes attr VM Attributes for the mapping. Pos-

sible values for this type are given in
Chapter 7.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Chapter 7

10.5.12 ARM Page Table - Unmap

static inline int seL4 ARM PageTable Unmap

Unmap a page table from its address space and zero it out

Type Name Description

seL4 ARM PageTable service Capability to the page table that will be un-
mapped.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Chapter 7

Bibliography

[Boy09] Andrew Boyton. A verified shared capability model. In Gerwin Klein, Ralf
Huuck, and Bastian Schlich, editors, Proceedings of the 4th Workshop on
Systems Software Verification, volume 254 of Electronic Notes in Computer
Science, pages 25–44, Aachen, Germany, October 2009. Elsevier.

[BSC+11] Bernard Blackham, Yao Shi, Sudipta Chattopadhyay, Abhik Roychoud-
hury, and Gernot Heiser. Timing analysis of a protected operating system
kernel. In IEEE Real-Time Systems Symposium, pages 339–348, Vienna,
Austria, November 2011.

[BSH12] Bernard Blackham, Yao Shi, and Gernot Heiser. Improving interrupt re-
sponse time in a verifiable protected microkernel. In EuroSys, pages 323–
336, Bern, Switzerland, April 2012.

[CKS08] David Cock, Gerwin Klein, and Thomas Sewell. Secure microkernels, state
monads and scalable refinement. In Otmane Ait Mohamed, César Muñoz,
and Sofiène Tahar, editors, Proceedings of the 21st International Confer-
ence on Theorem Proving in Higher Order Logics, volume 5170 of Lecture
Notes in Computer Science, pages 167–182, Montreal, Canada, August
2008. Springer-Verlag.

[DEK+06] Philip Derrin, Kevin Elphinstone, Gerwin Klein, David Cock, and Manuel
M. T. Chakravarty. Running the manual: An approach to high-assurance
microkernel development. In Proceedings of the ACM SIGPLAN Haskell
Workshop, Portland, OR, USA, September 2006.

[EKE08] Dhammika Elkaduwe, Gerwin Klein, and Kevin Elphinstone. Verified pro-
tection model of the seL4 microkernel. In Jim Woodcock and Natarajan
Shankar, editors, Proceedings of Verified Software: Theories, Tools and
Experiments 2008, volume 5295 of Lecture Notes in Computer Science,
pages 99–114, Toronto, Canada, October 2008. Springer-Verlag.

[Int11] Intel Corporation. Intel Virtualization Technology for Directed I/O
— Architecture Specification, February 2011. http://download.intel.com/
technology/computing/vptech/Intel(r) VT for Direct IO.pdf.

[KEH+09] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David
Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolan-
ski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood.
seL4: Formal verification of an OS kernel. In Proceedings of the 22nd ACM

93

http://download.intel.com/technology/computing/vptech/Intel(r)_VT_for_Direct_IO.pdf
http://download.intel.com/technology/computing/vptech/Intel(r)_VT_for_Direct_IO.pdf

94 BIBLIOGRAPHY

Symposium on Operating Systems Principles, pages 207–220, Big Sky, MT,
USA, October 2009. ACM.

[MMB+13] Toby Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie, Timothy
Bourke, Sean Seefried, Corey Lewis, Xin Gao, and Gerwin Klein. seL4:
from general purpose to a proof of information flow enforcement. In IEEE
Symposium on Security & Privacy, pages 415–429, San Francisco, CA,
May 2013.

[Pal09] Ameya Palande. Capability-based secure DMA in seL4. Masters thesis,
Vrije Universiteit, Amsterdam, January 2009.

[SA99] Tom Shanley and Don Anderson. PCI System Architecture. Mindshare,
Inc., 1999.

[SWG+11] Thomas Sewell, Simon Winwood, Peter Gammie, Toby Murray, June An-
dronick, and Gerwin Klein. seL4 enforces integrity. In Marko van Eekelen,
Herman Geuvers, Julien Schmaltz, and Freek Wiedijk, editor, Interactive
Theorem Proving (ITP), pages 325–340, Nijmegen, The Netherlands, Au-
gust 2011.

[TKN07] Harvey Tuch, Gerwin Klein, and Michael Norrish. Types, bytes, and sep-
aration logic. In Martin Hofmann and Matthias Felleisen, editors, Pro-
ceedings of the 34th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 97–108, Nice, France, January 2007.
ACM.

[WKS+09] Simon Winwood, Gerwin Klein, Thomas Sewell, June Andronick, David
Cock, and Michael Norrish. Mind the gap: A verification framework for
low-level C. In Stefan Berghofer, Tobias Nipkow, Christian Urban, and
Makarius Wenzel, editors, Proceedings of the 22nd International Confer-
ence on Theorem Proving in Higher Order Logics, volume 5674 of Lecture
Notes in Computer Science, pages 500–515, Munich, Germany, August
2009. Springer-Verlag.

	Introduction
	Kernel Services and Objects
	Capability-based Access Control
	System Calls
	Kernel Objects
	Kernel Memory Allocation
	Reusing Memory
	Summary of Object Sizes

	Capability Spaces
	Capability and CSpace Management
	CSpace Creation
	CNode Methods
	Capabilities to Newly-Retyped Objects
	Capability Rights
	Capability Derivation Tree

	Deletion and Revocation
	CSpace Addressing
	Capability Address Lookup
	Addressing Capabilities

	Lookup Failure Description
	Invalid Root
	Missing Capability
	Depth Mismatch
	Guard Mismatch

	Message Passing (IPC)
	Message Registers
	Endpoints
	Endpoint Badges
	Capability Transfer
	Errors

	Notifications
	Notification Objects
	Signalling, Polling and Waiting
	Binding Notifications

	Threads and Execution
	Threads
	Thread Creation
	Thread Deactivation
	Scheduling
	Exceptions
	Message Layout of the Read-/Write-Registers Methods

	Faults
	Capability Faults
	Unknown Syscall
	User Exception
	Debug Exception: Breakpoints and Watchpoints
	Debug Exception: Single-stepping
	VM Fault

	Domains

	Address Spaces and Virtual Memory
	Overview
	Objects
	Mapping Attributes
	Sharing Memory
	Page Faults

	Hardware I/O
	Interrupt Delivery
	IA-32-Specific I/O
	Interrupts
	I/O Ports
	I/O Space

	System Bootstrapping
	Initial Thread's Environment
	BootInfo Frame
	Boot Command-line Arguments

	seL4 API Reference
	Error Codes
	Invalid Argument
	Invalid Capability
	Illegal Operation
	Range Error
	Alignment Error
	Failed Lookup
	Delete First
	Revoke First
	Not Enough Memory

	System Calls
	Send
	Recv
	Call
	Reply
	Polling Send
	Reply Recv
	NBRecv
	Yield
	Signal
	Wait
	Poll

	Architecture-Independent Object Methods
	CNode - Cancel Badged Sends
	CNode - Copy
	CNode - Delete
	CNode - Mint
	CNode - Move
	CNode - Mutate
	CNode - Revoke
	CNode - Rotate
	CNode - Save Caller
	Domain Set - Set
	IRQ Control - Get
	IRQ Handler - Acknowledge
	IRQ Handler - Clear
	IRQ Handler - Set Notification
	TCB - Bind Notification
	TCB - Configure Single Stepping
	TCB - Configure
	TCB - Copy Registers
	TCB - Get Breakpoint
	TCB - Read Registers
	TCB - Resume
	TCB - Set Breakpoint
	TCB - Set CPU Affinity
	TCB - Set IPC Buffer
	TCB - Set Maximum Controlled Priority
	TCB - Set Priority
	TCB - Set Space
	TCB - Suspend
	TCB - Unbind Notification
	TCB - Unset Breakpoint
	TCB - Write Registers
	Untyped - Retype

	IA-32-Specific Object Methods
	IA32 ASID Control - Make Pool
	IA32 ASID Pool - Assign
	IA32 IO Port - In 8
	IA32 IO Port - In 16
	IA32 IO Port - In 32
	IA32 IO Port - Out 8
	IA32 IO Port - Out 16
	IA32 IO Port - Out 32
	IA32 IO Page Table - Map
	IA32 Page - Map IO
	IA32 Page - Map
	IA32 Page - Remap
	IA32 Page - Unmap
	IA32 Page - Get Address
	IA32 Page Table - Map
	IA32 Page Table - Unmap
	X86 Page Directory - Get Status Bits
	IRQ Control - GetIOAPIC
	IRQ Control - GetMSI

	ARM-Specific Object Methods
	ARM ASID Control - Make Pool
	ARM ASID Pool - Assign
	ARM Page - Clean Data
	ARM Page - Invalidate Data
	ARM Page - Clean and Invalidate Data
	ARM Page - Unify Instruction Cache
	ARM Page - Map
	ARM Page - Remap
	ARM Page - Unmap
	ARM Page - Get Address
	ARM Page Table - Map
	ARM Page Table - Unmap

